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Introduction

With the advancement of research and development in multiprocessing sysiems,
researchers are focusing greater attention on the design of the interconnections between
components of a system. Reliability analysis and performance evaluation are the essendal aspects
of any study into the effectiveness of a structure. We have begun investigating the reliability
problem for two types of multiprocessing interconnection schemes: multistage interconnection
nerworks and hypercubes. A group comprising Suresh Rai, Jerry L. Trahan, and three students:
T. Smailus, S. Ananthakrishnan, and P. Paragi, was formed to work on a range of subtopics.
Besides these, a Ph.D. student of Dr. Rai, S. Soh, and two M.S. students of Dr. Trahan, A.
Kulkami and R. Ahmed, looked into some of the related aspects of the problem. Dr. Rai also
interacted with Dr. S. Latifi of the University of Nevada at Las Vegas to devise a strategy for
bounding hypercube reliability. A bibliography at the end of this report compiles our research
results obtained so far on the topic.

Results

MULTISTAGE INTERCONNECTION NETWORKS

We have established simple and efficient algorithms for terminal reliability (TR) and
broadcast reliability (BR) evaluation of the shuffle-exchange network with an extra stage (SENE)
[1-3]. In the SENE, each input is connected to each output by a pair of complete binary trees such
that the input is connected by a directed edge to each of the roots, and the leaves of both trees are
idendcal. These very regular paths from an input to the outputs offer us the structure necessary to
solve the TR and BR problems efficiently. We first developed a sum of disjoint products approach
to this problem [2]. Later, we developed an efficient algorithm for BR evaluation of an MNxN
SENE by a recursive approach, resulting in a recurrence equation that can be evaluated within a
constant amount of time for each of log N levels of recursion [1]. This result establishes that the
problem of evaluating the broadcast reliability for a SENE is not only not NP-hard, as is the case
for a general network, but has a very efficient algonthm. We extended this algorithm to an
efficient algorithm for the K-terminal reliability problem.

If we consider a deterministic model for a network in which each component is given as
working or failed. then we can study a set of decision problems analogous to the reliability
problems of interest in the stochastic model. For example, a terminal decision problem is the
problem of determining whether a path exists from a specific source to a specific terminal, given a
network with a known set of failures. Efficient algorithms are of interest to determine whether a
given network with certain working and failed components at a certain point in ime can effect a
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needed set of connections. These algorithms are also of interest as they may provide techniques
useful for the reliability evaluation of specific networks.

For MINs, we have developed a set of approaches for the terminal decision, broadcast
decision, and network decision problems, and for the general S, T decision problem for an input
set S and output set T {1]. These approaches are based on either testing for the existence of an
appropriate pathset or testing for the nonexistence of a cutset. For the broadcast and network
decision problems, the cutset approach leads to better algorithms as we can more concisely
describe and locate cutsets than pathsets.

HYPERCUBES

The decision problem for hypercubes is explored considering a deterministic model for the
system. A real world problem is modelied assuming a given set of failures in a cube, which may
be restricted to subcube (a 0-subcube represents a node) failures only, or link failures only, or both
subcube and link failures. The failures could be of a permanent nature or of a temporary nature.
A permanent failure type refers to a complete outage scenario. A temporary fault is nothing but
unavailability of an i-subcube which is currently busy with some processes and is iiwvolved in
executing an algorithm. The question is then asked how to determine the size and location of the
maximal dimension available (fault-free) subcube. To help answer this problem we have defined
two operators, namely, # and $. We used these operators to develop a method for identfy all
maximal size, fault-free subcubes contained in a faulty cube [3]. (See attached report for details.)

Addidonally, we have addressed the problem of dynamically allocating subcubes of a
hypercube to multple tasks [4]. Our allocation algorithm falls into the category of available cube
techniques which offer the advantage of quickly recognizing whether or not a requested subcube is
available in the free list of subcubes. The allocation is done using a best-fit concept to select a
subcube for allocation, which in turn utilizes the notion of overlap-syndrome to quanufy the
overlap among free subcubes. Our technique has full subcube recognition ability and thus
recognizes more subcubes as compared to bit mapped techniques: buddy, gray code and its
variants. We have also developed a corresponding deallocation algorithm. The algorithms work
with the previous method for handling faulty nodes and links in the hypercube.

A probabilistic mode! for hypercubes is considered in [5, 6]. The studies are confined to
terminal and network reliability evaluations for their exact and approximate expressions.

GENERAL

In addition, we have developed an efficient Booiean approach, called CAREL (7], to solve
reliability probiems in general networks. The effect of preprocessing of path or cut terms on the
overall reliability expression is experimentally determined in {8]. Moreover, a capacity related
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reliability problem where two parameters such as availability of a link and its capacity are used to
quanufy the reliability measure (9], All these efforts are helpful in understanding different aspects
of the reliability evaluarion problem.

Ongoing Efforts

We are currently pursuing the following directions in our work.

For MINs, the standard reliability analysis model assumes that only switches can fail, that
links are perfectly reliability, that failures are stadstically independent, and that a switch is either
completely working or completely failed. Such restrictive assumptons are standard for reliability
analysis problems in general networks that are already intractable even with these assumptions. As
we have developed efficient algorithrs for reliability analysis of MINs, we are seeking to loosen
these unrealistc restrictions on the analysis [10]. Consequently, we are developing methods to
incorporate link failures, dependence between component failures, and multimode components into
the analysis. Currently, we are handling each assumption separately, but our intention is to
develop reliability evaluation methods incorporating all these more realistic assumptions. We are
also working to develop a network reliability evaluation algorithm for the SENE.

For hypercubes, our efforts are in two directions. First, we are working to improve our
subcube allocation and deallocation schernes. Second, we are studying reliability evaluation of the
hypercube, working from the terminal reliability results obtained as stated above.
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Abstract

The hypercube architecture is a popular topology for
many parallel processing applications. Several
researchers have analysed the performance and
dependability aspects of this architecture or its variants.
Fauwlt wlerance by reconfiguranion is another imporiant
problem in a large distribwed computing environment,
Jor conrinued operation of the kypercube muitiprocessors
dafier the failure of one or more i-subcubes andlor links.
This paper considers the fault wolerance issue and presents
an algebraic technique, called ATARIC, to analyse the
problem. ATARIC (Algebraic Technique to Analyse
Reconfiguradon for fault tolerance In a hyperCube) uses
algebraic operators w0 identify the maxirmum dimensional
fault-free subcube, and it thus helps in achieving graceful
degradation of the system. We analyse the complexity of
our algorithm. ATARIC is efficient as compared to the
algorithm of Ozgiiner and Aykanmat [4], where the
inclusion-exclusion principle is used. Examples
illustrase the approach.

1. Introduction

Hypercube multprocessors have been the focus of
many researchers over the past few years. The appealing
properues of the hypercube such as node and edge
symmeay, logarithmic diameter, high fault resilience,
scalability, and the ability to host popular
interconnection networks, viz., ring, torus, tree, and
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linear array, have made this topology an excellent
candidate for many paralle! processing apptications {1-3].
Concepually, the hypercube interconnection network is a
muladimensional binary cube with a processing element
(PE) at each of its nodes. An 'n’ dimensional hypercube.
By, has 2" processors and n2™! links. Each processor
has its own local memory and interprocessor
communication is done by explicit message passing.

Several varianis o the hypercube wpology such as
cube-connected-cycles (CCC), generalized hypercube
{GHC), bridged hypercube (BHC), twisted hypercube
(THC), folded hypercube (FHC), and star graph [2] are
described in the literaqure,

The suitability of a parallel architecture is evaluated
by analyzing its performance and reliability aspects.
Several researchers have investigated hypercube sysiems
using performance metrics such as number of nodes and
links, connecuviry, diameter, average distance, cost
expandability, etc. [3] with or without faults in B, Few
researchers have paid atientuon o dependability issues.
Dependability (in terms of reliability or availability)
prediction of a hypercube architecture uses a stochasuc
graph model of B;;. Note that this predicuon is quite
essenual since hypercubes have the powenual of use in
critical applicauons. Reliability (availability) predicaon
is important for systems with short {long) mission
ames.

Fault tolerance by reconfiguration is another
important problem in a large distnbuted compuung
environment, for continued operauon of the hypercube
muiuprocessor after the failure of one or more 1-subcubes
{a O-subcube is a node or PE) and/or links. Algonthms
for diagnosing fauity processors and links have been
given [5-7). Once the faulty elements have been
identified, graceful degradation can be achieved by




reconfiguring the multprocessor and the distnbuted
algonthm running on the muluprocessor (4]
Fortunateiy, most parallel algonthms can be formulated
with the dimension n of the hypercube being a parameter
of the aigonthm (8]. Hence, the reconfigurancn problem
in a hypercube multiprocessor reduces to finding the
maximum dimensional fault-free subcube(s). A subcube
is a subset of a hypercube which preserves the properues
of the hypercube.

References [4.8] provide simple procedures 10 find
the maximum dimension "d” of a fault-free subcube.
However. as indicated by Ozguner and Aykanat (4], the
procedure of Becker and Simon [8] does not always find
the maximum dimension and. furthermore, does not
construct the set of fault-free d-subcubes. Ozgiiner and
Aykanat [4] made use of the principle of inclusion-
exclusion in algorithms that always find d and also the
number of fault-free d-subcubes or the complete set of
fault-free d-subcubes.

This paper introduces a new algebraic technique o
analyse reconfiguration for fault tolerance in a
hypercube. henceforth called as ATARIC. The ATARIC
addresses the dependability problem also. But, it is
different from stochastic graph model based depend-
ability measures such as K-terminal reliability, subcube
reliability, and task-based reliability presented in the
literature {9-11]. We present two operators, namely #
{sharp) and $ (dollar), o help describe ATARIC. The #
operator is quite general and a modification to it finds use
in PLA tesung {12] and reliability computation of
general networks {13,14,19). Similar to the algonthm of
Ozguner and Aykanat [4], the proposed technique is also
formulated 0 run on a single processor which would
typically be the host or the resource manager in a
commercial hypercube system.

The layout of the paper is as follows. Section 2
provides a discussion on the hypercube and its properues.
The ATARIC operators, # and S, are presented in Section
3. Secuon 4 gives the algonthm and illustrates the
technique with examples. The complexity issues
descnibed in Section 5 show that our method is more
efficient than the previous approach (4]. Finally, Section
6 concludes the paper. An appendix provides a proof of
correctness of the algonthm,

2. Preliminaries
2.1. Hypercube concepts

An n-dimensional hypercube is defined as By =
K9xBq.i. where K9 is the complete graph with two
nodes. Bg s a trivial graph with one node and x is the

product operauon on two graphs [16]. Let By, be mogeied

as a graph GiV.E) with Vi = 2% and 1Bl = 0 2™ mhe
graph G{V.E) is both node and link symmetnc. Each
node in G(V.E) represents a processor and each edge
represents a link between a pair of processors. Nodes are

assigned binary numbers from 0 © ('.’.n - 1} such that
addresses of any two neighbors differ in only one bt
posiion. Using an n-tuple, a PE in By, is represented by
(bp-1s-nbje..uibg), where by € {0.1). Two adjacent
nodes which differ in the i-th bit are said 0 be n
direcuon 1 (0 €1 S n-1) with respect 10 each other. A
subcube in a hypercube By, is a subset of a hypercube

which preserves the properues of a hypercube. It is

represented by an n-tuple [O.I.x)n. Coordinate values
"0" and "1” can be referred w as fixed or bound
coordinates and "x" as free. An i-dimensional cube (or :-
subcube) in By has (n-1) bound coordinates and i free

. n
coordinates. Hence, there are 2n lu-,‘) different
possible i-subcubes in B,. We will use the terms node
and 0-subcube interchangeably throughout the paper since
they denote the same object. For links, we introduce a
different notation to differentiate between a link and a 1-
subcube. Here, a link has coordinate values as: 0, 1, and
q. For example, 100q denotes the link with end nodes
1000 and 1001 in Figure |. An n-wple describing a link
contains exacly one q. The posiuon of the coordinate q
in one of the n coordinate positions indicates the
adjacency direction for the end nodes. The reader is
suggested to refer to {16-18] for other interesung

propertes of a hypercube graph.
2.2. Fault models

The reconfiguration problem for hypercubes is
explored considering the faults located at i-subcubes
and/or links. [n Figure 1, when a 2-subcube xx10 is
faulty, we assume that all the four nodes forming the 2-
subcube along with their interconnecung lnks are
gnavailable. For i=1, a 1-subcube consists of a link and
its two end nodes, Thus, a faulty 1-subcube assumes the
entre group consisting of the link and its two end nodes
are unavailable. Node failure is considered as a special
case of i-subcube fauit, where { = . We assume that a
node and all edges connected to that node are removed
from the graph.

A link failure has the effect of deleung the parbcuiar
link from G(V E). We consider a link failure w0 be twoual,
i.£., we do not assume the case where 2 full dupiex hink
fails in one direcuon but functions in the other direcon.




This assumpuon allows the use of an undirected graph as
a nectwork modet as opposed 0 a directed graph (S].

Note that a link and/or node may be faulty due w the
presence of some hardware failure in the system. When
some task is currendy being executed on an i-subcube,
the said 1-subcube is temporanly unavailable and may be
considered as fauity from the viewpoint of reconfiguring
the muitprocessor to run an additonal task.

Let f1= 0000 and f9= 0100 be two fauity nodes in By
shown in Figure 1. The faulty processor f beiongs ©
the 2-subcubes xx00, x1x0, 0xx0. x10x. 0x0x. 01xx and,
therefore, desooys these subcubes. The ol number of

i

i-subcubes destroyed by a fauity processor is [,. - ,’) {4].
Note that the set of i-subcubes destroyed by a number of
faulty PEs may not be disjoint. For example, 0x0x,
xx00, and Oxx0 are also covered by the fault f}. In what
follows, we describe the coordinate # and S operations and
discuss an efficient technique to locate the maximum
dimension (fault-free) subcube using these operatwrs.

3. ATARIC operators

The # and S operators, defined below, are used o find
a non-faulty maximum dimension subcube in the
presence of subcube and link failures. To give an
algebraic definition we first define coordinate # and $
operations as given in Table 1. Let ¢, and fg be two
cubes of length n such that

¢r = (@] v-edje--20) and

fg = (Bp.pseereDjseenab)s
where 3; € {0.1.x) and b; € (0.1.x} (bj € (0,1.q}) where
the fault type is a subcube (link) failure. The # operation
between ¢, and f is defined by:

r

ic, cifa;#b; =yforanyi

c #fs =40 ;ifa;#b; =z foralli )
' U Gp—i...8i4+|Q;3j_1...ap: Otherwise,
{‘EP where P={il g;#b;=a;=0or i}

If C is a set of cubes, C = {c;,....c}, then define T # f;
h
= U cr # f5. The sharp (#) operator is introduced by
r=
Miller [15], and its application to PLA testing and
reliability analysis in general networks is descnbed in
{12-14].
The $ operator is similar o that of Equation (1).
Table 1 ulustrates the coordinate § operator. Let ¢, Sfg =

Cp U SDj=yloranyuelse, lete, Sfg=X W Y W
Z, where for some j, 3 S bj =1 and

D:ifa;Sb; = for some jand 4;S6; =t forall i =,
X= U Qp_|.. 0 .10;d; . ...dg,; Otherwise, where

l‘.EP P= {i lai8b;=a; =0o0r 1}.
V= (a,,_l....nj“,o.aj, a0, and
Z= (a“_1,.....13_,,1.1,35_1,...,30). (2)

Note, both # and § operatwors are non<ommuauve (i.¢.,
2; 0 b; * bjo a; . where "0" may describe # or S
operators). The foilowing properties of the "0" nperator
follow immediately from the definition.

1) cpofg=cpf eenfg=0D

2) crofy e

3) pofg * fioc,

4) (cyofg)ofym * cpo(fso0 fy): non-associanve

§) e fslofm=(cr ofp) U (fgofy)

6) (epnfg)ofm=(ofpn)n(fsofy)
From 5) and 6) it is obvious that the operators satisfy the
distributive law over the (U and ~ operations,
Moreover, the following interesung property is also
possessed by these operators.

7) (crofg)ofym=(crofplofs
Miller [15] provides interesting reading material for some
of these properties.
Example 1. Let 0100 be a faulty processing element in
B4. Using ¢} = xxxx (i.e., B4 is assumed to be non-
faulty initially) we have -

Cy # fq =xxxx

0100

1011 ; using coordinate # operation.
Fromn Equation (1) we get -
¢y # f1 = {Ixxx, xOxx, xx1x, xxx1}.
Example 2. In Bg, let xx10x describe a subcube
unavailability. Assuming ¢ = xXxxx, we get -
cp # fl = XXXXX
xx10x

201z ; using coordinate # operanon.

From Equation (1) we get -

¢y #f = {xx0xx, xxx1x}.
Note that ¢y # f] = (xx0xx, xxxlx) provides the
informagon about working or available subcubes.
Example 3. Consider a fauity link 00q (= 1) in B3. For
€} = xxx, we have

¢y $fy = xxx

1t ; using coordinate $ operauon.




From Equadons (1) and (2) we get -

¢y $fy = (Ixx, xIx, xx{, xx0}.
The first two values are obtained for t = z and the next
two values are for t = 1 or 0. Thus, the fault-free 2-
subcubes are: Ixx, xIx, xx1, xx0.

4. Algorithm

The operators discussed in Section 3 are useful in the
understanding of ATARIC. The steps of the algorithm
are as follows.

Step 0. (Given] Fault list f, f3 ....fp. An element f;
describes a subcube and/or link failure and uses
the representation described earlier.

Step 1. (Ingalize] Cy= (¢}, wherecy =xxx ... X.
The cube ¢) is an n-wple and assumes that B,
is non-fauity (available) initially. Seti= 1.

Step 2. Compute C;; =Cjofj, ')

where the operation "o" is either # or $
depending on f; representing a subcube or link
failure, respectvely. Note that C;,.; may have
one or more than one subcubes.
If Cip1 =D, go 1o step 4.

Step 3. Incement i = i+l.
Checki>m
a) if yes, go to step 4.,
b) if no, go to step 2.

Step 4. Stop.
lustratng Example. Let the faulty elements in 2 6-
hypercube Bg be

f; =011000 f» = 000101 f3 =001qi0

fq4 = 100010 fs= 110111 fg = 101101

Note fy, f5 , f4 , f5 , and fg describe fauity nodes while
f3 describes a faulty link. [nigalizing cj W X XXXXX
and following the steps of the algorithm, we have

Ci # f1 = {lxxxxx, x0xxxx, xx0xxx, xxx1xx, xxxx1x,
xxxxx]}

Cy #fp = {1xxxxx, Xxxx1Xx, ...}

C3 8 fy = {Ixxxxx, ...}

Ce# f6=' [xxx0x1, xxx1x0, ...}.

Thus, two fault-free 4-subcubes exist that can be
used o reconfigure Bg. In this example, most of the
details are suppressed 0 maintain the readability of the
paper. We shall give the details shoruy.

Theorem. For any n-dimensional hypercube in which we
are given a list of faulty subcubes and/or links, the non-
faulty subcube can be identified using the algorithm.

Proof: Refer wo the appendix. l

The algonthm descnibed here is good for computer
simulagon. An algebraic echmque formulated using
these concepts is presented next. To help understand the
technique we need the following representauons and
definidons.

Pl. We represent a fault f; using nowuon {a. a, 3}
where an uncomplemented (complemented) vanable
denotes | (0). An 3 denotes the "g" of link fadure.
An absent variable in a posiuon represents the "x”.
Therefore. a faulty node 0110 is represented by a b
¢ d, a subcube fault 11x by ab, and a link fault
001ql0by a bcde f.

P2. A D-operator operates on fj. It modifies fj using

following transformations:

AND() = OR(+)
a>a
a—?a _
a7 Q@a+ra) _ _ -
Th_x_xs, D(abcd)y=(@+b+c+d)andD( a becg
ef)=@+b+c+d+d+ E«f). Note, we have

used *© (+) and » () interchangeably. Also the
Boolean identty of the type z + a * 1 in this case.
However, the identity a a is sull applicable.
P3. The "o" operator ("0 stards for # or S) is, then,
described as:
Cp=D(f}) and @
Cip1 =G DXFy.
Here, juxtaposition of C; with D(f;) denotes the
Boolean AND operation and C; D(f;) can be expanded
using Boolean rules {15]. Equaticn (4) has the same
effect as Equation (3).
Using P1 through P3 above, the illusorating example
is solved as follows.

Binary
fi representaton  Variable representation
fi 011000 bsba b3 b2 by bo
fz 000101 Bs ba b3 b2 by bo
f3. 001q10 bs ba b3 b b1 bo
fa 100010 bs bs b3 b2 b1 bo
fs 110111 bs ba b3 b2 by bo
fs 101101 bs ba b3 b2 by bo

@ Cy=D(fi)=(bs ~by+b3+by+by+bp)
(i) C3=CD(f)=(bs +bg + I3 + by + by ~ by)
(bs + by + by « by + by + by)
= bs + by + byby + baby + baboy + baby + b3y
+b3by + baby + byby + byby + baby + byby + bty




(i) Ca = C3D(f3)

= o3 bg ~ by ~ ¢

8
'
b
'
Y
‘
g
'

g

-ty - bain = b = 620 - by
~fugher order (erms

(iv) C5 =CaD(fs)=bsbs ~ bsby ~ bsb + bsh
~ bsby = bab3 + baba ~ baby + baby + by
- b3y = byby ~ badg ~ bty

+ higher order terms
(v Cs =CsD(fs) = bsby + byby + o3bg + babo
- bsl—?} - bzgg + higher order ierms
(V) C1 =CsD(fg)
= bybg + byby + higher order terms

The cubes 52 bg and by Eo in binary representation
give wie results as (xxxOx1, xxx1x0}. While compuur.g
the fault-free 4-subcubes we have suppressed the
information regarding higher order terms. These are
relevant only when we fail to compute a non-fanity 4-
subcube. The noton may be exiended to enumerate facit-
free d-sibcubes. Here, we should initially use
intermediate e-ms having cardinaiity j, 1 $j < d. Notes
that terms with cardinality j correspond to n-ples with j
bound c¢oordinates and n—) free coordinates. Terms with
cardinality (d+1) or higher are kept with a different
group/bin.  This bin is, obviously, useful when we are
unable 10 generate a d-subcube. In this way, we are using
a pruned-tree approach to contain the size of intermediate
terms generated by the algonthm.

§. Complexity analysis

We now analyse the time complexity of the
algorithm presented in Section 4. We assume that
compuung <y # f for one cube ¢, and for one cube f; can
be done in one ume step for each resulting cube. We
assume that each fault is a 0-subcube (that is, a node) as
this will produce the worst case bounds. “or a given list
of m faults, the algorthm computes C;,; =C;of; on
eaci of m ueratons. Each C; may be a set of cubes, so
our object is 0 bound the number of cubes in C;.
Inicaily, C; = (x x x ... x}. By definiton of the # and
S operators, ip *he worst case, C9 may contain n cubes:
XX..X00 XX...XQf X, ..., @y X ... X, where @; €
(0. 1}. In the worst case, a set of cubes produced by c, #

fg may contain at most as many cubes as there are x5 in
¢y, and each of those cubes will contan one less x than
¢ Hence, C, may contun at most a{n=1) - - - (n=1+1) =

nt/{n-1)! cubes. ~her= n is the dimension of the
hypercube B, nunder considerauon. Actuaily, with n

symbul posmons and 3 possible symbols, [0, 1. x},
there are at most 3“ possibie cubes. Let v be the least
value of i such that ni/(n—i)! > 3" Note that nin—1) - - -

(n=i+1) < n'. So the ume w0 compute m weranons of
the algonthm, form S v, is

m m

al i
LT 2 o,

And the ome 10 compute m iteranons of the algonthm,
formzv,is

Z(n_‘): 23n

{=v+]

< Zn + 220(5

t=vel

= 0(n") + (m-)22®
m2P®.
In terms of N, the size of the hypercube, the ume

complexity for number of faults m § v is O((log N)m‘) =
O®), and the time complexity for m > v is O(mN).

The above time compiexity describes the nme (©
generate a list of all faunit-free subcubes, given m failed
nodes. If we wish instead w compute a list of all fault-
free subcubes of dimension at least n~k, then we can
obtain a better ume complexity. In this instance. the
cubes with k or fewer 0 or 1 symbols in theu
representanons (that is, k or fewer bound coordinatss)
correspond to cubes of dimension n—k or higher. lf m

k, then we again obtain a ume complexity of O/ nm)
But if m > k, then we obtain the following ume

complexity.
i - 2
1
xi(n. ()‘ e {n— k)

k m
i k
< 5_",. + )n
=1 i=k+l

= O(nk) + O((m—k)ns
= X(m-k)n").



This ume improves on Ozguner and Aykanal's

| ol mk("\«) o
algorithm {4] that requires \ k } ;j ume o iocate the
avaiiable subcubes of dimension n—k or greater.

The ATARIC procedure will have a significandy
beter expected ume complexity, however, for a random
set of fauits. Let us call a cube with k bound coordinates
and n—k free coordinates as a type k cube. Each cube in
set C;can be of type j, for 1 S j< i=1. The analysis
above assumed that each type k cube would in a single
iteranon fragment into k type k-1 cubes. By e
definidon of the # and § operators, a type k cube will
either fragment into k type k~1 cubes or remain as a
singie type k cube or disappear. A type k cube will only
fragment if each of the k 0's or 1's in the ¢, cube matches
exactly with k identical 0 or 1 bits in the faulty element
fs. otherwise, the ¢, cube remains as a single cube or

disappears. For a random fault fj, the probabiliy is 2'<

that the cube ¢, will fragment and 1-2"% that it will

remain as the same single cube or disappear. Therefore,
the number of cubes in Cp, is much, much less than

O(nm).

6. Conclusion

This paper has described two operators, namely # and
S. The sharp (#) operator is used extensively for
generaung test set for logical fauits in PLA and also for
reliability evaluadon in general networks. The doilar (S)
operator is introduced in this paper for the first ime.
These two operators are the main feamres of ATARIC.
The proposed technique is straightforward and efficient as
compared to previous algorithms {4,8]. We plan to
extend the concept for the subcube allocation and task
migration problems in hypercube multprocessors.
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Appendix

Proof of correctness
The following three sieps are usefui w venfy the
carrectness of ATARIC:

Step 1. If we form c; # f;, where ¢; and f; are cubes. then
the sharp (#) operator produces the set of subcubes of ¢;
which do not intersect wath f;. If a y is obtained in any
coordinate posidon, then that coordinate is bound 0 0
(1) in ¢ and 1 (0) wn f;, so the cubes ¢; and f; are
disjoint, and the sharp operator produces ¢;.

Step 2. The removal of a link in dimension i from a
cube produces the foilowing subcubes: the set of
subcubes produced on the removal of the l-subcube
containing the link (that is, the link and its adjacent
nodes) and the two subcubes produced by parttioning
the onginal cube along dimension i. These iast two
subcubes have the same gescription as the original
cube, except for a0 or 1 in positon i. If we form ¢; $
f;, where ¢ is a cube and f; is 3 link, then the §
operation is very similar to the # operation. The
difference lies in the handling of the variable 1 that may
occur in the same coordinate positon as the q in fj.
The case in which t is set to z produces the subcubes
disjoint from the 1-subcube conuwining link f;; the
cases in which tis set 10 0 and 1 produce the subcubes
that contain the endpoints of the link.

Step 3. The result of the operanon in Equauon (3) is a
set of cubes from C, that are not covered by f;. The

iteradve applicadon gives a cover of the subcubes, if
any, not covered by the fault list.

Table 1. Coordinate # and § operatons

b 0 1 X
5 ]
z y z
1 z
X 1 0 z
(a) # operation
b 0 1 q
8 |
z 4 Yy
1 y z y
b 4 1 0 t
(b) $ operation
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CAREL: Computer Aided Reliability
Evaluator for Distributed Computing Networks

Sieteng Soh, Student Memoer, IEEE, Suresh Ral. Semor Memoer. [EEE

Abstracr— This paper presents an efficient method 10 compute the
terminsl reliability (the probability of communicatica between a par
of aodes) of a distributed computing sysitem (DCS). We assume that
the graph model G(V, £) for DCS is givea. Also. it is assumed that
we have path and/or cut informatios {or the aetwork G(V, £). Boolesn
algebraic concepts are used 1o detine four operators aamely, COMpare,
REDuce, CoMBine, and GENerste. The proposed metiod. heaceforth
cailed CAREL (Computer Aided RELiability evaiuator). uses these four
operators 10 geperate exciusive and mutuaily disjoint (€.m.d.) events,
and hence the terminal retiability expressicn, Examples illustrating the
techoique are given in the text. We have impiemeated CAREL using bit
vector representation [11] oo Encore MULTIMAX 320 system. CAREL
soives large DCS aetworks (having pathset of the order of 780 and cutset
of the order of 7300 or more: with reasoaable memory requrement. A
comoanison with existing aigorithms reveais the computatons! efficiency
of the proposed method. The proof of correctness of CAREL is included
in the Appendix

Index Terms— Bit vector representation. Boolesn technique, CAREL,
combinational and sequential refiability, distnbuted system refiability,
minimal conditional cube, minpath. miocut. operators—COM. RED,
CMB, and GEN, reliability evaluadon tool.

L IntRODUCTION

DVANCES in computer technology and the need to have

the computers communicating with each other have led
10 an increased demand for a reliable distmibuted computing
system (DCS). An mportant performance metric in the design
of highly reliable DCS network is provided by its termioal
reliability parameter [1]. Note, the terminai reliability refers to the
probability that at least one path exists between a prescnibed node
pau in the dismbuted system {2}, [6]. All methods of terminal
reliability computation are known to be NP-hard [2], [9], (10},
(23}, (26}, [27).

Several algonthms dealing with the terminal reliability eval-
uanoo are proposed in the literature [1]-{4], {7], [12}-{19],
[21], [24], [25]. These methods fall in any one of the foi-
jowing categornes: state enumerauon, decomposition technique,
inciusion—exclusion, factoring, and sum of disjoint products. A
summary of these techniques, including their relative ments and
demerits, can be found in {2}

Various techniques {1}, [3], {12]-{16], [18], [19] have utilized
Boolean coocepts to obtain a sum of disjoint products, and hence
the terminal reliability parameter of a given DCS network. All
of these methods start with a Boolean poiynomial formed by
either the success terms (mrnimal paths) or the failure terms
(mnimal cuts) for a given DCS. The paths or cuts are sequenced
in order of theuw increasing cardinality For each group of
terms of the same s$ize, the orderng is lexicographic following
the orders of the symbols of the alphabets. The ordenng of
terms helps reduce the overall time complexity for generaung
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sum of disjoint products (SDP) expression. A method [1], {31,
(121161, {18}, {19], then convens the Bootean poivnomiai of
paths or cuts 1nto an equivalent Boolean SDP form that represents
the disjoint svstem logic. Note. an SDP expression has 1!
correspondence with the svstem probability formuia. A drawback
of the aigonthms dased on the manipulation of Boolean sum of
products or umpiicants 15 in the iterauve appiication of certain
operauons and the fact that the Boolean functuon chasges a
every siep and may be clumsy. Moreaover, the Boolean funcuon
is simplified using absorption rules [20] and, thus requires a
considerable computauonal effort {3]. Therefore. most sum of
disjoint products algorithms are applicadble oniv to smail 0
moderate sized networks. Receatly, Veeraraghavan and Trivedi
(18] has reported an algorithm modifying the concepts given 1o
[3). Their method solves a large DCS aerwork (Fig. 11 in [18] is
same as our Fig. 19 but for few directional links and. thus. has
oaly 425 paths) in 166 668 s (= 46.3 CPU hours). Qbviously. we
stll need an efficient algonthm (on the applicanon of Booiean
algebra) to solve terminal refiability probiem in large distnbuted
processing system. The CAREL (Computer Aided RELiabuity
evaluator) provides a solutios in this direcnon. CAREL computes
the terminal reliability parameter of the DCS nerwork of Fig. 19
in less than a minute CPU ume.

The CAREL uses Boolean aigebraic concepts. and COM-
pare, REDuce, CoMBipe. and GENerate operators. Refer o
the text for a discussion on these operators. The algonthm s
efficiently impiemented as the CPU ume obtained for generanng
termunai reliability parameter for some moderate 10 large sized
nerworks is considerably less as compared to that reporied
for other algonthms [1], (3], (18]. SYREL (1] provides an
efficient impiementauon scheme for E-operator techmqueilZ]
using set theoretic concepts, mumimal condinonal sets (MCS),
and parutioming MCS’s into tndependent and depeadent groups
10 reduce the amount of computanon n generaung dis)omt sum
of products expression. The S (sharp) and @ operators {3}, [18]
reduce the total number of disjoint products by grouping vanables
together such that approxumctely 5040 % saviog i the fnai
reliability expression is achieved. CAREL utilizes the advantages
of both SYREL {1] and (3] and {18] to obtamn low computauon
time. Moreover, CAREL operators are bit implementabie (refer
to text).

The layout of the paper is as follows. Section {I provides
2 generalized view of vanous exisung Boolean techmques. [t
outdines and compares their basic philosophies. The aouon of
data representanion 15 also considered. Secuon [I1 introduces the
noianon used and defines four operators sameiy COM. RED.
CMB, and GEN. The algonithm, uts umpiementation details. and
vanous ilustrating examples. are described in Secnion [V Section
V provides companson tables showing the computer ume tor
evajuating moderate to large sized DCS networks. [t also presents
a companson of CAREL with exisung techniques. We concluae
the paper 1n Section V1. The Appendix shows the proot for the

1045-921981/0400-0199301 0N © 1991 [EEE
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correciness of the ugonthm.

{I. PRELIMINARIES

Consider 1 linear graph G(V. £) model for the DCS nerwork
such that noges ¥ regges £) represent compulers (Communicalion
links). Assume G(V. £) is free from seif ioops and directed
cycles. Eacn edge nas wo states - good (UP) or bad (DOWN),
Nodes are pertect (tmperTect nodes can de consiaered followng a
methoa given o [2}). Let the failures be staustcally wdepeadent
(statisticailv dependent raulures can be sotved foilowing a method
given w ;5]). This assumpuon s usetul 1o make the problem
mathematcally tractabie. A munpath £, s a path from a source
pode 3 to a termunal node ¢ 10 G(V, £). It 1s formed by the set
of UP =dges sucn that no nodes are traversed more than once.
Pathset 15 defined as the set of muapaths. A cut 15 a disconnecung
set. All communicauon berween a prescnibed (s, £) node pair 15
disrupted once the edges w (s, ¢) cut fail. Define a oquncut as a
cut which has 0o proper subset that is aiso a ¢ut, and cutset as
the set of mincuts. Assume that either pathset or cutset between
a source s and terminal ¢ wn G(V, E) is known.

A. Data Representanon

Data sgucture is an important aspect of designing efficient
algontams [8). Rosenthai [11] discussed the advantage and
disadvantage of three different kinds of data represeatation for
cutset eoumerauon. This secnioo briefly describes one of the
representations, namely the bit vector representation because it
is suitable for the umpiementation of the proposed method. A
minpath (muncut) in a aerwork with [ links is represented by !
bits. An UP link of the network is denoted by a binary 1. A binary
0 stands for a don't care state (not a DOWN state). Consider
the minpaths ab, cd, ade and bee berween the (s, ¢) node pair in
Fig. 1. These minpaths are stored in memory as

ab : 0000000000000011 cd : 0000000000001100
ade : 000000000001100t bee : 0000000000010110.

In this example, we bave utlized the word size w as 16 bits.
Note, a munpath (mincut) requires [{/w] words of memory. With
bit vector representanon, the storage requirement for a minpath
(mincur) depends oan the towal aumber of links in the network
and pot og the size of the pathset (cutset). Coding and decoding
of path informauoan into bit represestaton and vice versa may
add exwa cost as it involves [ bit tesungs. However, this pre-
and postprocessing of minpaths (mincuts) are one ume operauon.
They are usually worth the extra computanion as the generation
of disjoint events requures considerable mampulatons. Moreover,
the ability of bit representation in detecung and eliminating
redundant terms using set theoreuc operauons jike umion, -
tersection, subset. &tc., 1s an imporant advantage. To illustrate
the concept for redundancy checking, assume the reference term
X. and a test term XY (which s a redundant supset of X):

reference (X)) 11001
test (XY) 11101 oroperaton
11101
test (XY) 11101 :gor operation
0000

A result *0 0 0 0 0" shows XY redundant. A duplicate term 1s
detecied using the same approach. The st theoretic operanons are

UmDIemenisy €asiiv 4nd he computantcn me S ifigeneneny

e speed Of :Ne S€L 0perauons, LoCTeasss (e COMrutauos ime o
one untt for everv w addiuonal fwnks. The proposed metnoa ases
inese operations with COMpare and REDuce operators irzier
10 the text} and we have discussed it in getail @ Secton (V-
B while considenng the unpiementauon of vanous set tneoretic
operauons.

B. Boolean Techniques Conceps

Vanous Boolean techniques of reliabilitv evajuauon start wun
a sum of Products expression [or auApatas of Cutsets and cooven
it into an equivaient sum of disjoint products expression. [n the
SDP form, an UP or logical success (DOWN or failure; state of
a link z s repiaced by link reliability p (unreliability g), and the
Boolean sum (product) by the anthmeuc sum (product). (n other
words, the SDP expression is interpreted directly as an equivalent
probability expression of terminal reliability. If F, represents a
path identifier (an UP state of a link in a path P, has 1 n F,
while a don’t care is represented by 0), the sum of products
expressicn £ is given by

F=|r. (1

where n denotes the number of minpaths (cutsets) berween (3, £)
sode pair in G(V, E). Equation (1) 1s modified either canomcally |
or conservanvely to generate the equivaient SDP expression, !
F(disjoint). The comservauve modificanon is usually preferred.
since it 1s more efficiem compared with canonicai modification.
where 2‘ events are required 0 determine F(disjoint). ({ is the !
number of links in the network) A sumple way to generate the :
muwuaily disjoint events in (1) is as follows:

F+RFE+RE B+ +F T .. F._ where F, denotes
DOWN eveas of pats P,. The probability of UP (operational) for |
an ith term £, T‘—E;: F._, can be evaluated using conditional |
probability and standard Boolean operanons as

(R}

Pr(F)-Pr(F-F---FoIF) = Pr(F) [[ Pr(E,)-

=i

Here, an E, represents a conditional cube [20] and defines
conditions for a path identfier F, DOWN gven F, as UP
(operauonal). The probability of the first event Pr(F)) can be
determined 1n a straightforward manper, since the failures are
assumed to be statisticaily independent. However, the coetficient
Pr(E,) requures further consideranon since various ierms within
E,’s will, in general, be not disjoint {2]. This necessutates £, s
10 be made murually disjoint before we generate the equivaient
probability expression. Note, F.’s 1 (1) are sequenced 1o the
order of their increasing cardinality, and aiso for each group ot
terms of the same size, the ordenmng is lexicograptuc. Therefore.
the disjoint products for any (m —1) size path ideanfier F,, where
m denotes the number of nodes 1 G(V, E), 1s obtaineq directiv
by intersecting the complements of the remauning {~1m-1) links
of G(V, E) with F,. This observauon (first made w {12}, and
then proved in {1]) reduces computationai ume for algonthm:
based on Booiean concepts.

Vanous rescarchers [2] bave givea techniques whuch geperate 3
disjoint expression for {F,, £,) pawrs in (1), and aiso e (£,. £
terms within an £,. The following three proposiuons (P | throug!
P IID that convent F into F(disjownt) represent basic philosopmes
for most Boolean methods 1n the reliabihuy literature
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Fig. 1. DBndge network
P I: The proposition P [ defines intermediate term(s) T.'s as

L]

T = F*"each literal of £.—

-t

)

where F' = Fy and F* = F, OP, T.. Here, F* refers 10
the cquivalent disjoint product term(s) for F,. The operauon
“OP,” is a necessary disjoinung operator. (Table [ lists vanous
operators.) The F(disjoint) expression is, then, given by

Fidisjoint) = | | F*- 3
2

Algonthms [16] and (19] make use of propositioa P I.

P II: For each term F,,1 < i € n,T; is defined o be the
union of ail predecessor terms F,, F;, ---, F,_,, in which any
literal that 1s present in both £, and any of the predecessor terms
is deleted from those predecessor terms, i.e.,

1w

T= U Fileach literal of Fimt’

=i

Consider F* = F), and define I = F; OP; T.. Equadon (3),
then, obtains the equivalent F(disjoint) expression. Hariri and
Raghavendra {1}, Ra and Aggarwal {12)], Fratta and Morctanari
{14], and Benneus (10] have based their methods on proposition
P O0. Refer to the Table | for OP, operator.

PIO: For 1 < j < n, use operadon “OP;” to perform

F=(...((F,OP F,)OP, F,)OR,...)OP, F,_;-

@

)

Equanon (5) obtains a set of disjoint cubes conesponding 0
F,. Note. F! = F|, and OP; represents an appropnate
disjointing operator. The F(disjoint) expression is, then, given by
(3). Tiwari and Verma (22], Gmarov et ai. [3], Abraham {13}, and
Vecraraghavan and Trivedi (18] have proposed their techniques
using P [II concept. References (3], [13}, (15], and [22] consider
F,'s in cupical notauon {20]. Table [ lists operation OP; as
suggested by vanous researchers ia the literature {3}, {13}, [15],
(18], (22}

Example: To ilustrate propositions P [ through P 0OI, consider
a DCS aerwork shown in Fig. 1. For the (s, t) node pair. there
exists four munpaths: ab, cd, ade, bce. In what follows, we explain
steps 0 generate the exclusive and mutually disjoint event(s)
or cube(s) for F; (= ade ). This is demonstrated using typical
methods for propositions P [ through P [II. For uniformity, we
keep the nownon [12] wmith a modification that the state of a
DOWN link 7 is denoted as (1 — y).

P L. Considenng [16], F* = ab, and F? = (1 - abled. Use
(2) 10 define Ty as (b + (1 = b)¢) for F;. Replacing OP, with
X-operator [16], X (Ty} is (1 — b)(1 — ¢). F° is then obtained
as F? = F; X (T3). The term F* is geaerated similarly. An
expression for F(disjoiat)is F(disjoint)= ab+ (1 ~ab)cd + (1 -
b)(1 = cjade + (1 = aj(1 - d)bee.

TABLE |
JP ~OP; USED WITH BOOLEAN ALGEBRAIC TECHNIQUES
i+~ Proposed aigornthm)

! Overator | Function | Reference
OP, ! Cuser Disjoint Procedqure : 1 R
0P, i Modified S operaior i 18] “
0Py | $ operator | 131
oP; ; E-operaior i 12
OPy | COMPARE( ) funcion P
OP | X-operaor Pooae
opP, } Soolean negauon ! [y
oP, t Relanve compiement and Procedure ) (101 J
oPy, CMB ( * ) operator i - i
OP; i |

P H: We have used E-operator [12] to explain the operaiion
OP; and, hence, the concept behind proposition P [I. The erms
F' =ab, and F? = ({1 - @) + a(1 — b))cd are computed using
[12]. To generate F?, an intermediate term T is obtained as
TJ:ab - Cdln-acal =b+c

Note, E (T3) is (L = b)(1 = ¢). Heace, F* = F E (T}).
Similarly, we obtain F¢.

Equanon (3) is

F(disjoint)= ab+ ({1 -a}+a(l =b))cd + (1 = b)(1 - cjade -
(1 =a)(1 - dbee

P III: Use (3] to obtain the terms F' = ab, and F? =
(1 = ab)cd. Here, the § (sharp) operator (3] substitutes for OP;.
The cube F? is generated using F° = ({F; OP; F, ) OP, & ).
The inner term Fy OP; F, gives (1 — b) ade, which with
F, generates (1 — b){1 — c)ade. Similarly, compute F* for F,.
Equation (3), then, gives

F(disjoint)= ab+ (1 - ab)ed +{1 = b)(1 = c)ade + (1 ~a}{1 -

bee

Note, F(disjoint) expression obtained from different propo-
sitions when expanded out should be ideancal. In Fig. 1. the
termunal reliabilitv 15 0.97848 when each link is assumed 10 have
a reliability of 0.9.

C. Existng Boolean Techniques—A Comparison

Propositions P I through P {II maintain the minpaths or mincuts
list in memory (1). Consider 1 for UP link and O for don't care.
and urlize bit representation technique (discussed i Secton iI-
A). The memory requirement is, then, [1/16] words per path
(cut), where ! is the sumber of links in the DCS nerwork G(V,
E). Proposition P | makes F, disjoint with respect to U'Z F7,
while propositions P [T and P 1T unlize U}, F,. Should we have
sumilar operations to tmplement (2) and (4), the proposution P 1
wnil require more operations than that needed for P II. Generally,
an F, geoerates more than one e.m.d. events F*'s. Hence. the
aumber of events wavolved in U, F’ s larger than hatin U, F,.
For example, Table [V ( .V35* ) shows results for :+ = 780. The
pumber of terms n (2) is more than 50 000; on the other hand.
(4) aeeds exacty (1 -~ 1), i.e., 779 terms. Note, in proposition P
[, the generated e.m.d. events have to be kept un the memorv
to umplement (2), which 1s not the case for P [T or P OI. This




makes 2rovosiaon P [ sequennai. Moreover. 2 [ zemancs i nuge
memorv space (0 evaiuate a large DCS networks. On tne otner
nand, 2 I or P I has umpiicnt paralleiism, making ¢ sasier tof
the programmers (0 impiement them on panaile] svstems. Overail.
the proposwuon P {I or P [I] provides advantages in companson
with P 0

Ag inaivsis Of performance companson berwesn 1 fypical
examole of proposinon P [I and P (I s aiscussea :n (1] SYREL
{1}, an :mpiementaton technique for E-operator {12}, s shown
{0 have derter pertormance 1 companson with § -operator {31 It
means oroposition P {1 outperforms P 1. Moreover, propesition
P O offers a taster umplementation approach thar tnat wn P [ or
P [I. The out vector impiemestanon , £, maxes tne realizauon
of i4) w iword size) omes taster than generauing () based on
oroposinion P L Later wn Secuon V. we shall show that CAREL
outpertorms E-operator {12] or SYREL [1].

OI. CAREL (ComruTeER AIDED
RELIABILITY EvALUATOR): Backcrounp

Secnon [II-A presents a notanonal concept which 1S use-
ful to describe CAREL. We have defined COMpare, REDuce,
CoMBine. and GENerate operators in Section [I-B. These four
operators form a basis for our aigonthm CAREL.

A. Nowunon

For the DCS nerwork G(V, E), consider a set of paths
P,’s berween source s and destinanon ¢. The path idenufier
F; idenafies P, in the cubicai notanon [20] using a string of
symbois {0, 1}. Thus. an UP state of a link in the P, bas 1 in
F, while a don’t care state is represented by a 0. F’ denotes
exclusive and murually disjoint eveat(s) and is generated for F.
To beip obuain F?, conditionai cubes E,’s (defined later) are
unlized. Both £, and F? are in Boolean domain. An E, is
composed of complemented and absent variables and requires
{ -B¢. 0} symbols, while F? uses { -4/, 0, 1} [19]. The 3
represeats 3 posidve integer and [ is a superscnpt or index. We
use 3 superscripted negative integer to represent a complemented
vanabie (DOWN state of a link). To help illustrate the concept
of this gew notauon, the cube ab c d is represenied as (-2'
-2' 1 -1%). Simularly, the product term abd % g is denoted as
(=3' = 3 =~ 2¢ ~ 3" =22 0 1). Note the followng:

1) An uocomplemented, or compiemented, or abseat vanable
1s replaced by i, =3, or 0 in the posinon of the vanabie,
respecuvely.

2) A *=3'" represents complements of 3’ number of van-
ables which are grouped together. (-1 signifies singie
vanable compiement. Use of index 1s optional with -1.)

The aeed of superscript or index is illusrated with the example
of a Booiean term Tii; Tyw, Wyws represented as (2! = 2 -
22 — 2 = 2 - 2h) [f the indexes are not used. a potauon of
(-2 -2 -2 -2 -2 -2) for this exampie, 10 all likelihood. would be
wrongly wnterpreted. The advantage of (37, 0, 1) sotagon lies
in 15 umiqueness i handling compiemented vanables that are
groupec together (3], 18], (19]).

8. CAREL Operators

In what follows, we discuss four operators COM, RED. CMB.
apd GEN used in CAREL. Given a set of path idennfiers .7, £,
we want 1o generate disjoint events F' generated from the £, for
ail ;. The COM operator generates 3 set of condinonal cubes
E,,; = 1.--1-1for an F,. The condinonal cupe set £,’s

JescTibes (e events that 3 path idenuned ov £ S dperatons..
wmie patns P, ) = 1,2 -1 - | raul The RED operator. r
e ouier aand, s ysed (0 remove e reguncant! conciucnui
cupes from the gencrated set £,'s. We call the aonrecungarn:
cubes mimmai condiuonal cubes (MCTS. [f we nave aniv one
cube 0 the MCC set, or the cubes are murually aisiowmt amone
themseives, we may generate the disjoint events £ arecuv. B.:,
i geoeral, the MCC's are not disjowat. Thus, we aeed e CMB
OpPErator 1o create disjoint events of MCC's. Refer 1o Secuon 11-B
for the need of making MCC's £,'s murtually disjoint. Finaily.
the last operator, GEN, gives the disjoint events /

1) COM (% ) operator: The COM operator 15 used w compare
wo cubes. The COM1 (COM2) version describes proposition P
[ (P ). For P [, consider two cubes F, = (@, 8, -- a; and
F' =ibyby - by) where @, € {0, 1} and b, = (=, O, 1}
The COM1 (\) is. then. defined as

#: ifa, =1 inall those 3’ posinons woere bs
are - (3’ It shows tat F, and F’ are

F\F!' = o
mutually disjoins.
E\ : otherwise
where, the conditional set E, s ( ¢y &y - & ). A (=a, Y
b,) is obtained using the following twable:
b
-4 0 ] 1
a; 0 0 0 l -a
1 0 o | o

Here, a represents the total number of places where (0, 1) pair

|

in (Fi, F7) occurs. For example, consider £, as{010100 1), :

and F? as (1 =2t =2 =22 1 = 22 0 ). The COM1 operanon
obtains £, as given below:

F..O1 0 1 0 0 1
Froo1 2t a2r 21 220
E, 220 0 0 22 0 O

Note, a = 2 as two (0, 1) paurs are present. On the other band.
the ( \ ) operation with F7(1 = 2¢ - 22 = 2¢ | = 22 0) 1s shown
to be auil {(¢).

F 0 1 0 1 0 0 1
XIS U U L L SR A
E. null set (9)

For proposition P 11, the COMpare { \ ) operator requires two
cubes F, = (a6, ~--ar)and F, = ( by by -- b ), where
both a,, b, € { 0.1 }. Here, COM2 is defined in a straightforward
manneras : E,' = F, \ F, = F, pl F, df F,. wherc “pi” anc
“df" are set operators. When the operands F,, F, € { 0.1 }, the
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operator “pi” and “df" are bitwise OR and EOR, respecuvely. Let
a e the towal number of 1's present with £, Replace 1's in
E. by -a' :0 generate the conditional cube £,. For exampie,
consider “pi” and “df” operauons for £, and £, given below:

F,. 0101010 )
F, 0.1 00 1 0l ;use"p" (bitwise OR) operation
0101111
F. 0.1 0 t 0 1 0 ;use df (birwise ECR) operation
v 0000101

The conditional cube £, is, then, obtained from £,' by
replacing 1 by ~2' in the posinons of 1. Thus, £, = 0000 -
2¢0-2'. Note, the COM1 operacor detects and eiiminates some of
the redundant terms while other redundancies are deleted by the
RED operator. The COM2 operator does not check redundancy.
Nonetheiess, COM2 operator is bit implementable, and offers
a great advantage over COM1 from the aspects of computer
memory and speed.

2) RED ( / ) Operator: Consider two conditional cubes £, =
{ene - ),and Ev = (dy &y --- di ), where
a.d €{-80} Fora, § € 3, the RED (/) operauion
is given by

E,; if ¢, = —a in ail those a positions
where d, = ~§and § > o
E;/E. = { E; if d; = =4 in all those § positions
where ¢, = ~qand a > §
Retain £, £,; otherwise.

Note, by REDucing ecither E; or E,, we remove redundant
product terms. The remaining nonredundant E,'s are, henceforth
said to form a minimal conditional cube (MCC). The following
examples illustrate RED operation:

MHE 0-22 0 20 0
E._0-3 3 3 0
E,”0 -2 0 22 0

e, 0 22 0 -2t 0
E, .32 .32 .31 0 0
Retamn £, and E,

For (i), —a = ~2',=§ = =3*, and § > a. Moreover,
-2%s are 1n both positions where -32's are present. Thus, E,
is redundant and the result is £,. A similar expiapation follows
for (ii). The RED operator, defined above, is suitabie for P 1.
For notational simplicity, let us call it RED1. ¥%th propositon
P 11 a simpier version (RED2) is adopted. Note, the COM2
operation gencrates subcubes E,' which contauns 0's and 1’s
only. Using E.''s. and the concept expiained in Section [-A.
the redundancy checking required in RED?2 operator is brought
down 10 set theorenc operations “pl” and “df " This observauon
will help make RED?2 implementation faster as compared with
that for RED1. Using RED2, the exampies (i) and (ii) car be
solved as

ny =¥ 3 1 219
e D 1 v 1 9 "sf {or operanon)
Y 2 S O )
E, 0 11 0 . "JdFf EcR operaton)
J 0} J ) 3 [ means £, :s redundant
WE 91010
E, L1 1 1 0 0 :"pi"(ow operauon)
| S S G S
E 1 1. 1.3 17 ., "df (cor operauon)
E, 0 0 9 1t 0 ;nonnuil means rewan both cubes

3) CMB (*) Operator: The CoMBine (*) operator processes
MCC £.'s as us operands. Before applying CMB. parnton the
set of £.'s into wndependent {1G) ana dependent (DG) groups.
The MCC's that belong 10 G are already mutually disjoint among
themselves. Thus. generaung the disjoint events F* from (G s
scraigntorward. [t has been observed in {1] that most (s, t) paths
in large DCS networks (which are loosely connected type; do
ot have common elemeats among them. The partinoning of £.°s
nto |G and DG can be embedded in the impiementanon of RED ¢
/') operation (refer to0 Secnon [V-B), which avoids an unnecessary
taxing of the impiementauon of CMB ( * ) operator. Moreover,
the processing cost (as will be clear later in this section) for
IG is far less than that for DG, the overall improvement w the
performance of the algorithm is obvious.

Defirunion: Consider MCC's £, and E, whose elements
G, d €{=3%, 0}. For 1 <1 < I, if there exists at least one
(¢, d.) pair for ¢,,d, # 0, the £, and E, are sad o0 form
dependent group (DG). As an exampie consider £, as (~2'0 - 2!
0000), and £, as (~3?00-3*-3% 0 0). Here. £, and E, befong
10 DG, since they have a common element i position 1. Use this
definition to select out DG's from noanredundant MCC £,'s. The
remaining £, terms form [G's. The (E,, E,) entry io IG has
00 common elements among themseives. [t means the (c,.d.)
pair will always be of the types (0.0),{—c.0), and(0. =¢).
Considznng this. terms like (0 = 2000 -2°0)and (000000
-1) belong to [G. Note, these terms are indepeadent with both £,
and E, cousidered above. For notauonal simplicity, we denote
the elements of independent (dependent) group by /G, (DG.).
For| £, =7} IG, (=n,and| DG, |=vn « ~ =~
Note, an element £, belongs o either IG or DG. The CMB
operator differenuates our aigonthm CAREL wath (1], {12}, {16},
[19). We discuss the diffetences in Secnon V. The following rwo
cases define CMB: CASE 1 (CASE 2) 1s used for independent
(dependent} group.

CASE 1 (CMB for independent group): For 1 € 7 < n, the
CMB operates iterauvety as

IG,,) = [G) - IG).‘ (6\'

where “*” is a “p{” operation such that 0 p{ 0 = 0.0 p{ = 9
= =6, and -a pi 0 = —a. Equanon (6) states that we wil
eventuaily get one term /G,

Example: Coasider tour /G, 's. namely, /G,{00~2" - 2!0000}.
IG, (-10 000 000)), IG4(0—3%*00-- 320 - 3%0), and /G, 00000 ~
20 - 2%). We get G, as follows:

IG, 0 0 22220 0 0 0
IGy -1 0 0o 0 0 0 0 0
IGy -1 0 2 .2 9 o0 0 0
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CASE 2 {CMB for dependent group): ln this case. the CMB
operator 1s guite wvoived. To define this operator. use Steps |
and 2 below:

Step 1: DG, = DG, generates two cubes TG, and TG,
The cube TG, has -4 10 those ¥ posmons where cudes DG,
and DG. both are negative, while others are “07s. TG, has “1™
in all § posinons and us remammg entnes are gcncmed from
DGy and DG~ using 0 pi c =z pi 0 = ziz 2 { =3, 0
Before appiving “pi” operatton, upda!c vanable x by addang 4 w
z. Note. the entnes in TG's belong to { —=J', 0. 1}

Step 2: Consider TG, = { fi /s - f )amd DG, =
(dydy - di ); where f, & {=a".0.1},d, < {=¢* 0} anc
a’ , & £ {3} The foilowing substeps obtains TG, 's .

for (all DG,) begin /* 1 = 3./

for (all TG,) begin /* ; = 1....*’
aall DG (TG,, DG,. TG"), /* TG’ is the result *
if (terminate)

j=7+ 1
end:
TG = TG', /*we create new TG, list */
end;
Step 2 needs a procedure DG ( ) w obtamn vanous T35 s

An algorithm for DG(TG,, DG., TG') is as follows. Note.
make the algorithm easier 10 follow, we providz =1 exampie for
each case (a)(f) in Boolean expression where X 1s any Booiean
expression.
while (TRUE)begin /* forever, stop when termipate=TRUE *
delta = Number of (1,—6%) pairs;
alpha = Number of (—a’, —6‘) pairs:
/* Consider the following cases of (delta, alpha) */
(deita == ¢/ aipha == don’t care) : /* case a) */
begin /* (abcX) (abc) = ¢ */
termunate = TRUE; return;
end:
(detta > 0, aipha == don't care) : /* case b) */
begin /* (abX)(aocde) = (abXXcde) */
for (k =1 w0 [) begin
if (DG[k] == -6’) begin
TGkl =
DG.'[k] = 0:
eise
DG;[k] = DG,[k] + delta;
end:
end;
end:
(6§ = =0):/* case ¢) ¥/
begm /' C‘vf.B for independent group */
TG, = TG, pl DG;; * (abXXcd)y=abedX */
append TG, 0o TG,
termipate = TRUE; return;
end;
(deita == 0, alpha == a’) : /* case d) */
begin /* (abc) (abX) = abX */
appead TG, w0 TG';
terminate = TRUE; return:
end;
(deita

== 0, alpha == 6’) S/t case e} */

L T T L T
begio * taocX) (a0 = a0.¥
- TG, = DG, pt (the rest of eiements :a TG, omer nas
~-x};
appead TG, 10 TG':
termunate = TRUE: requrn
end;

OTHERWISE : * case ) */ _
* {aveX) (aocd) = ad X - (ab€ X Ned)
'* note, e first term above s one of the fnal resuit *-

begin
fortk = | w0 ) begin
DG (k] == -¢‘) begin
T G.[k} == —a‘) begin
TG, {k] = —apna:

eise begin
TG. k) = TG,{k};
DG.[k) = DG.[k] « alpha - delta;
end:
end;
eise 75 (ki == ~a') begin
TG {k‘ =0
TG, (kl = TG,[k] = alpha;
md:
tise
TGk = TG (kL
end. f
woead 75, 10 TG,
od:

ead. .

Note, cases a)-{) are obtained from Theorems Al and A2 ir
the Appendix. A proof on completeness of CMB operator is alsc
pven n e Appendix.

Exampie: Assume DG, {~3'0-3! =3'000000), DG, (—430-
410 - 40000 ~ 4%}, DG, (=30 - 3%00 ~ 3°0000) and DG.
(=400 ~ 4*0 - 4* - 4*000), where DG, € DG for 1 <1 <4

Step 1. We generate two cupes TG, and TG, as follows:

DG, -3 0 3* .3 0 0 0 0 0 O
DGy, 42 0 4 0 4t 0 0 0 0 4
TG, 2 0 22 0 0 0 0 0 0 O
TG, 1 0 1 1 .22 0 0 0 0 .22
Step 2. Consider TG, * DG, and TG, * DG,. Using
procedure DG ( ), TG, = TG, because TG, * DG, is o

case (d) (refer to the procedure). The TG, * DG, is computed

as follows:

TG, 1 0 1 -1 .2 0 0 0 0 .22

DGy -3 0 -3 0 0 .3 0 0 0 0 :caseb)deita=2
TG, 1 0 1 1 -2 0 00 0 -2 ;keep TG,
DG, 0 0 0 0 -1 000G O ; update DG,
TG, 1 0 1 -1 -22 -1 0 0 0 -2*;csec)

Thus, the new TG,'s are: TG\(-2'0 - 2:0000000) and
TGa(101 = 1 = 2% - 1000 — 2%). They are further CoMBuine
with DG,.
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Z'G‘ - DGJ -
TG, -2* > .22 0 0 0 0 0o 0
DGy <4* D N 4* ) 4 4* 0 ) 0 .case)
TG, -t 9 0 0 0 0 0 0 5 0:TG-0G
ootains
. TG,
i i 1 .“4 . 4 - 4 M t
G, 1 0 - 0 3300 0"~ Fned
TG‘_"DG.;:
TG, ' 0 1 -1 -2 a4 0 0 0 .22
DG, ~«* 0 0 * 0 a* 4* 0 0 0 ;casebh)
TG'z 1 21 -1 .22 -1 0 O 0 .2 ;kccp TG-;
DG, 0 0 0 .3¢ 3 .3 0 0 O ;cased)
TGy, 1 0 1 -1 22 -1 0 0 & -2 ;the result

We get three TG, 's : TGy (=1000000000), TG, (10-1-3*0-
3* - 3000), and TG, (101 - 1 = 22 = 1000 = 2%). To heip under-
stand these steps, we provide a step by step computation using
Boolean notation. The four DG,’s are equivaient to acd, acej,
acf, and aaf 3. We nave assumed that a DG, is a function of “a”
through “;” Boolean vanabies. The CMB operator determines

(acd) (ace7) (acf) (adfg) = (at + acd e7) (acf) (adfy)

~(3 aF ~ acd 5 3F ) (ad7) = (2 + (acd ) () (2F9)
= (aZ + acd €7 f)(aafg) = (a2 adfg + acd &7 f adfg)
=d+afdfg + (acde f)(dfg) =@ +aZ dfg +acde) /-

The above example is solved using following Boolean identities
{20}

E+PET+N=FT+7§Z:; T-TY=15;
= (T +27)

4) GEN ( 3 ) Operator: Consider the path identifier F,
(@, @q -+ a), the cubes generated fom CASE 1 and CASE
2 CMB operauon as [G, (e, e --» @), a0d TG (fL fr -+~ fili
wherea, £ {0. 1}, e, €{ -3, 0},and £, € {30,
1 }. The GEN ( © ) operator, then, obtains F's: ! = F, 3
IG, 3 TG,. As an example, assume cubes F,, IG,, and TG..
Then F? is computed as

£ 0 ¢ 1 1 0 0 0 0 020
G, 2t 22 900 0 -1 0 0 O
TG, 0 0 0 0 1 220 -2 10
Froa2r 211 1 222100
Forab, € Fl, obtain b, = a;, ® ¢ & f. The birtwise
operation @ 15 shown below:
0e0ad0=0
l20@0=1
0@~ 90=-4
a0l =1

0a0s -3 =4

Here, we have considered oaly those five (out of 12) combi-
nations which are feasible.

Theorem i - The comowmatons 0. 1. 0) and 1= ).
not possivle.

Proor: Using ne defimuon of /G ,, 1t is €asv 10 snow that the
occurrence of (0. 1. 0) is not possible. Moreover. & represen:s
a path idenufier defined over {0, 1}. Thus. a "~J'" entrv i £
does not appear with F,. =

Theorem 2: More than one occurrence of 1 or -3¢ in position
i for the cubes (F,, IG,, T'G.) 1s not feasible.

Proof: A multiple occurrence of 1 in posiuon 1 confirms the
presence of an uncomplemented vanabie with (F,, T'G.) com-
binauon. The cubes /G, and TG, represent disjoint expression.
and are generated for a path ideaufier F,. Thus, the possibility of
having two 1's in posiion : does not anse. A simiar argument
follows for muitiple -3/ or {1, ~J‘) combinauons. =

Hhoare

IV. CaREL: ALGORITHM AND IMPLEMENTATION

A. Algorithm

The steps of the proposed algonthm are shown betow.

CAREL.:

begin

Sort F, in ascending cardinality, and for terms /“refer o
(12}, {15] for its advantages*/
of the same size, use lexicographic ordenng;
Ft = F,
for ail paths F; begin /*i = 2, ... */
COM (F,F);/*j =1, - 1=1, we get £,’s */
RED (E,.E,) ; /* rerumn irredundant IG's and DG's ™/
CMB (IG,, DG,) ; /* produce IG, and TG, */
GEN (F,, IG,, TG;); /" gt F*’'s */
end:
Compute the refiability(unrefiabifity) vaiue R(G) (Q (&)):
end.

Consider COM1 and RED1 (COM2 and RED2) operauons
while using CAREL with P 1 (P W) propositions. Thus. CAREL
applies equaily for P { and P [I. To compute the terminal
refiability (unretiability) parameter, we have deveioped a program
called re_num which accepts the output from GEN (F,, /G.,
TG,). For given value of link reliabdity, re.num produces
a aumerical value for the terminal reliability. One may use
any other software package like vazima [18] to evaluaie the
reliability or unreliability expression. Tables [~V sbow the
reliability figures for 19 different types of DCS aetworks.

B. Implementanon

This section describes an implementation of CAREL for
proposition P [I. It is based on bit operatons. The implementation
of CAREL P! follows similarly, and will not be discussed. Both
CAREL P [ and P {I are writen in C. [n what foilows., we
consider four macros which define bit operations. The cost for
each macro call is also given.

1) SetUnion (sl, 32, 8) ; /* 9 = sl U s2 */ cost : [1/16]

assignment operations.

2) SetDif (31.32,3) ;/* s =31 - s2 */ cost : [I/16] EOR

operations.

3) SetCompare (sl, s2) ; /* return TRUE if sl == 52 *' cost

1 & {1/16] 1f staements.

4) SubSet (si. s2) ; /* return TRUE if s1 € s2 *'

cost : 1 SetUnion ( ) + I SetCompare ( ) calls.

In 1)}3), { represents the aumber of links of the network and
a word *w” is of 16 bits. These four bit operations are used to
unplement CAREL operators.




L COM . impiemenianion. A procegurs COM 2, 7 s
impiementea 25 [ollows

for ; = . 0= .l begun
Setmon + 5., F., 55 % 5 15 temporary result ¢
SetDifis, 7., 2, ). £, s e result.append it 1o £, ust *
end:
Note. tne tumper of COM { ) fupction calls s 1 =2 = - - =
in -~ 1; = —— lImes i0 a netwark with n pains (Cuts).
2) RED + i Impiememanon: In COM ( ) operauon. we

produce =, (refer o Secuon [[[-B1). The £, and bit operauons
obtatn non reaundant MCC's. The impiemeatauon of RED
Operalor s SNOWN Delow:
for ail Z,''s begin /* =], .. ¥
if (SubSeu £,", £.Y)/* £,/ 1s REDucible by E,”
dispose £, areak:
eise if (SubSeu(E,’, £,))/* E," is REDucible by £, */
dispose £.";
else
create IG and DG groups:
end:
if £, was not disposed
add £, w0 E,’ list;

Note, the nonredundant E,’'s are in bit form (baving 0's and
1's oniy). The MCC E.’s are generated from £,''s by repiacing
1 by ~a‘ in the positioas of 1, where @ € 3/ (refer 10 Section
[I-B). The number of RED ( ) function calls is n times in 3
aerwork with 1 paths {(cuts). The mumber of loopings inside the
RED ( ) funcuon depends on the setwork type. and also on the
path idenufier F, for which it is called. For the worst case, RED(
) for F, needs 1 loopings, and heace the computation of RED
operator is of the order O(n?).

3} CMB (*) Impiementarion: The CMB (*) operator is the most
time consuming operator out of all the four operators we have
used in our method. The implementation of CMB for independeat
group is straightforward, and is shown first:

for (al /G)begin /*i=1,.--n=1"%

for J = 1 10 ) begin
iG] = 0)
IG.) = IG.[j;
end;
end;

The umpiementanon of CMB ror depeadent group is expensive.
Note, 2 DG, contams (~37, 0, 1); we cannot utlize bit operations
for CMB operator. To update the contents of the CMB operands.
DG, and TG;, as well as o0 generate TG,', we trace the contents
of the operands element by eiement. The computauos ume s
highiy data dependent. But, in any case ( refer to cases (a) through
(f) in the procedure considered in Section {[I-B3), the order of
computation ume is O(l). Note, in our program, Step 1 of the
algonthm falls nto case (f). The maximum number of DG,'s
is k for generaung e.m.d. evenus) for F,, and the pumber of
generated TG, is O(k). Hence, the worst case cost for calling
CMB( ) 15 O(k*) of DG () calis.

4) GEN 1 3 ) Implememianon: This operator is processed by
sequenually tracing the contents of F; and /G, for generating
F(s) events. The procedure GEN(F,, IG,, TG,) impiements

9 operator:
for (all TG.'s) begin /*k = 1,..-%/
for 7 = 1 10 {) begin
if (F.O] #0)
Bl = R
eise if (/1G] # 0
F'h1 = 1G4}

end;

end:

Note. :or 3 patn idenufier 7., we get aisicint 2veats: 5 The
ume combpiexitv invosved in GEN ¢ 1 for 2 nerwork 3esencs on
the numoer of toe generaied e.m.d. evenis ~ 5. [f :ne paximum
aumber of e.m.d. events 1S m, the wOrst case COMDIEXHY § Ot
the order Oi{mn,.

C. llustranng Examples

Exampie: Consiger Fig. | wuth (3. t) pawss a6, cd. ade. and
bce. Paths are encoded as path idenufiers 7501 € ¢ < 4j, ang
are sorted 1 thewr ascending cardinality as:

£ 0000000000000011 F;  0000000000011001
F;  0000000000001100 F,  000000000001011C.

Followng the aigonthm given im Secuon IV-a, F* = F.. To
generate e.m.d. evenys) for F;, we san wuh COM(F, F)
and COM(F;, F;) which gve E,'(0000000000000010) and
E;" (0000000000000100) respectively. RED(E,) rewuns botn
E"s, and groups them wmto IG wth an emptv DG group.
CMB operanon obtawas /G, as 0000000000000-1-10. Finally,
GEN(F, ,IG. ,DG) gaves F? as (0000000000011-1-11), which
can be interpreted in an wrermediate form as ade(l - dX1 - ¢).
Note, this resujtant expression has one 10 one correspondent with
the probabulity expression. Similarly, we obtawn F? and F*. The
various e.m.d. events are:

F(disjoint) = ab + (1 - ab)cd + ade(1 = b)(1 = ¢) + bee(1 — |
a)(1 - d)

Example: Consider Fig. 4 and its 13 path idenufiers as

F, (0000000100100010) F; (0000000100010001)
F3 (0000000010001001) £, (0000000011100010)
Fy (0000000010001110) £, (0000000100010110)
F; (0000000011010001) £y (0000000100100101)
F, (0000000101001001) Fyy (0000000101001110)
F,, (0000000011010110) F; (0000000010111010)
F\5 (0000000011100101).

The e.m.d. eveni(s) for F, is generaced using the steps mentioned
ia the algonthm. The details are shown below: For 1 <1 < 7,
COM(F,.F.) obtauns

E\’ (00000C0000000010), £,' (0000000000010000),

Ey’ (0000000010001000).£," (0000000011000010),

E’ (0000000010001010), £’ (0000000000010010),

and E, (0000000011010000).

The RED operaton, then, removes E,’ through £.'. because
these terms are redundant with respect to either £, or £
The RED also classifies the noaredundant terms wio IG
and an empty DG set The CMB operator obtawns /G, as
0000000~2'00-1~2!0-10. Finaily GEN operato1 generates F°
as (00000001-2:01-1-21-11).

Example: This example shows the generanon of em.d.
event(s) for F, and. thus, illustrates the concept of DG's. For
1 €1 < 8, COM(F,,F.) obtains

E\" (0000000000100010), £y’ (0000000000010000).

£y’ (0000000010000000), £, (0000000010100010),

Es' (0000000010000110), £, (00 000000000101101,

E+" (000000001001000C), and £, (000000000100100}.

EJ through £," are REDuced. The RED procedure lists £, and
Ey' wth (G. while £, and £, are keot in DG set. The CMB
operauon obtains /G, as 00000000-100-10000. The elements i
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Fig. 2. 6-node, 3-link network.
s @

Fig. 3. S-node, 3-link Nerwork

A

DG group are used to generate TGy and T'G; (in step 1) as
follows:

DG, 0000000000 =2'0 0 0=2'0
DG, 0000000000200 -2020
TG, 0000000000-100000
TG, 000000000010 0-1-10

Since we do not have any other DG, s, Step 2 of CMB operation
is skipped. Terms TG, and T'G, are the finai resuits for CASE
2 (of CMB). Hence, from GEN operator, we get wo e.m.d.
events for Fy, samely (00000001-11-1-11001) and (00000001-
111-11-1-11). An expression for F(disjoint) of kig. 4 is given
as

bfi +aei(l = bf) +adh((L = i) +i(1 =bf)(i —¢))
~bfgh(l = ad)(1 = i).+ bedh(l = a)((1 ~ §)

= f(1 =1)(1 = 9)) + beei(l = a)(1 = dh)(1 = f)

~aeghil = bf)(1 =d}(1 = 1) +acfi(l = b)(1 =dh)(1 - ¢)
+~adgi({l = e)(1 = f)(L=-h)

= (1 =) (1 =c)(1 =) f(1=h))

+ bedgi(l —a)(1 = e)(1 = f)(1 = h)

+beegh{l = a)(1 - d¥(1 ~ f)(1 =1)

+~bdefh(l ~a)(1 ~c){1l =g)(1 -13)

~acfghl(l = b)(L = d)(1 = e)(1 =1).

Assuming that each link has 0.9 2s prebability of survivability,
the terminal reliability for the DCS (Fig. 4) is 0.977814.

V. EXPERIMENTAL RESULTS AND Discussion’

Table {I gives us the information of the networks used in our
expenments. We name a nerwork Njews,, Where # paths and #
cuts are the number of minpaths and mincuts, respectively. As
shown, Figs. 1-8 possesses less than 20 paths, while there are
281 and 780 paths with the DCS given in Figs. 17 and 18, and
19, respectvely. Tables [II-V provide results for 19 different
types of DCS nerworks. We have consideted two performance
parameters as

1) The number of disjoint terms generated (DPath), and

ii) The computer ume involved to obtain reliability figure.
This includes processing time for i) and also the reliabdity

Fig. 4 Modifiecd ARPANET '3}

Fig 5. ARPANET wm 1971

Fig. 6. 7-oode, 1S-ink setwork.

&

ig. 7. ll.ocde, 2ldink network

&

Fig. 8. 9-node. 13-link nerwork.

or unreliability expression evaluation tme using renum or
vazsima [18].

First, the performance (refer to Table {I) of CAREL ( wath
P [ option ) is compared with that of VT [18), a representanve
method for proposition P UL The. reiiability values obtained in
both CAREL and VT (18] are exactly the same. CAREL (with P
[ option) obtains the same order of e.m.d. events as w {18]. The
number of e.m.d. events gencrated is influenced by the ordering
of the munpaths/mincurs (13]. When we scrambled the ordenng
of the paths, we got more (less) oumber of events than the ones
reported in the table with exactly the same reliabdity values.
We gotice that when 2 nerwork generates ess aumber of e.m.d.
events, it requires jess computanon ume. From this observation,
we believe that preprocessed qunpaths/muncuts ( in addinon o




e ZES THANIALTT NS N AR aNG JLTRAGL IO sruTiae -
TABLE U
NETWORKS L3580 v EXPERIMENTS
Networx Pans Cats omments
N i 4+ Fig. . Bnoge nerwork
‘ WY v 3 Fig 1 >-noge. 3-link nerwork
? N3 3! 3 Fig.  i-n0ce. $-hink serworx
; N 13 ¢ 9 ' Fig + Moaifiea ARPANET 13}
! V3 13 28 Fig. 3 ARPANET un 19T}
' \',}f 4] 18 | Fig 5 T-noge. 15-link nerwork
! Nege 8 110 | Fig. 7 i1-node. 21-lnx nerworx
{ N3 18 | 24 | Fig. 3 S-nace, 13-hax network
i3 ! 24 19 | Fig 9 8-noce. 12-ink serwork (3]
VN2 : 20 20 l Fig. 10 Fig © wan different source
VI ; 25 20 | Fig i1 7-vode. 12-Lax nerwork
Ng i 9 29 | Fig 12 8-noae. 13-Unk aerwork (18]
Ve ! 36 ‘ 396 | Fig. 13 16-a0dc, 30-link petwork [14]
v | as | 523 | Fig 16 ARPANET (18]
B } “ 25 | Fig 1S Reduce . form of Fig. 14 (18]
¥z f 64 78 | Fig 1¢ 10-a00e. 21-dink [18)
N 1 1300 | Fig. 17 ARPANET (14]
v | 81 214 | Fig. 18 Recuced form of Fig.17 ARPANET
NI % 780 7376 | Fig. 19 20-node. 30-iinx [10]

sorung them in ascending cardinality as suggested m [12]), s
peeced (o further improve the performances of exisung methods.
The results 1n Tabie I show the supenonty of CAREL (wath
P [ opuon) as compared to VT (18], a represenistve techmique
of proposition P [I. The runmng tme tmprovement n CAREL
is more nonceable when we evaluate targer nerworks (Figs. 16
and 18). The results support the discussion in Secuon [-C. and
analysis o (1]. Note, COM1 and RED1 (COM2 and RED2) is
used 18 CAREL with P I (P I) opuion. Thus, CAREL P [ and
CAREL P (I differ only i generating the munimal cooditional
set (MCC) E,’s. Like other methods in proposincn P {I. CAREL
P 0 obtauns the MCC's from minpatymuncut of a nerwork
(4), while CAREL P [ incorporates (2) (Secuon [I-B). The
COMI. 1n addition o generating conditnonal set, reduces some
of the redundant terms too. Thus. RED1 operanon in CAREL
P | utlizes iess oumoer of operands than that used m RED2.
However, COM1 operator utilizes more terms than COM2 (refer
1o Secnon [-C). Bit operanons are used to unpiement CAREL
P 0 and is one addinonal factor which makes this method run
faster than CAREL P L The other problem with CAREL P [
method s on the memory size used. To wcorporate (2), this
method has to mauntan a list of e.m.d. events. For a large
nerwork which generates more than 50 000 events (Tabie [V).
the program requures a huge meoory space that 18 available only

Fig. 9. 8-node, 12-link networx {3}

on large sysiem. Furthermore, the huge number of events reduce«
the speed of CAREL P | sigmficanty. CAREL P I, as well a+
CAREL P I, requures a list of muspattymuncut. Since oue pat
/ cut w a nerwork which contans { links geeds | {/w * wo<
for w word size, this requirement does oot prevent CAREL
11 of soiving large distnbuted system. Both vanants of CARE
use the same CMB and GEN operacors for their OFP, and OF
in CAREL P (I, generanng e.m.d. evenus) of a paw identfic
F, 15 wndependent from other e.m.d. events obtained for cthe
path identfiers F,'s. From this observation. we gonce that muo
changes in CAREL P [ will make it quite surtable for parall
system umplemenwanon. Overall, CAREL P [I 15 a bener metnc:
compared to CAREL P [

Tabie [V shows the compansons of CAREL P 1 and CAREL
0w term of e.m.d. evens genenated, the reliabbitv vaiues, a

r
H
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Fig. 10. 8-aode, l12-link network (Fig. 9) wath different source.

Fig. 11. T7-uode, 12-link network.

ANEZ8

Fig. 12 8-oode, L3-link network {18].

Fig. 13. 16-oode, 30-link network {14).

Fig 14. ARPANET (18]

the running time to obtain these values. Both methods get the
same e.m.d. events and reliability values. However, CAREL P
I obtains the resuits faster than CAREIL P 1 as we can see from
the tabie. Furthermore, as expected from our previous discussion,
CAREL P [ has problem evaluating large nerworks (e.g., Fig.
19). The results show that proposition P [l is benter than P I,
which back up our previous discussion in Section [I-C. We, thus.

conclude that CAREL P T { imp/ementation of proposition P IT)

Fig. «5 ARPANET (Fig !4) aner senes—panailet regquciions

Fig. 16. 10-node. Z1-hnx (18]

is a berter method compared to both CAREL P [ (proposition P
) and VT (18] (proposiuon P [II.

CAREL P U 15 more effictent compared wuh SYREL 1}
SYREL needs 0.8 s (on VAX 11/750) o get :he ‘erminai
reliability value for aerwork shown n Fig. 9, while CAREL P
0 uses only 0.1 s (on Encore Muitimax). CAREL P {1, whle
keeping the algonthm erficient. produces less sumber of disjoint
events expressions compared ©0 SYREL. Our CAREL cube
gotauon enables the aigorithm 10 produce concise expression.
bence less aumber of events that reduce the running ume of the
algorithm. For example, SYREL produces disjoint events F* as
adh (i + 58 + fZ bi), while CAREL generates ach (i — 357 i),
which contain 3 aod 2 terms, respecuvely, We do not provide
other comparison results of CAREL and SYREL {1] because
SYREL does not report any results for larger sized aerworks.
Since CAREL P I basically combines the best feature of SYREL
{1] (i.e., using MCC) and take iato account the advantage of using
variable groupings of [3], we expect CAREL P I 10 outperform
both SYREL [1] and {3] as verified by our expenmen:al resuits.

The compansons of evaluating reliabdity and unrehiabitey
values of dismbuted system networks are shown wn Table V. We
use the same aetworks as in Tabie [, and utilize CAREL wth P
I opuon. The unreliability values are obtained from the 2.m.d.
events of guncuts of the perworks. We generate mincuts from
minpaths using a sumpie program based on a method discussed
tn {2]. However, one may use other methods for s sieo. In
most DCS nerworks (shown here), we obtain more numoer of
cuts than that of paths. Thus, evaiuaung the reiiadility vaiues
is faster than compuung the unreiiability vaiues. For aerworks
which have less aumber of cuts than paths, the opposite s true.
Thae table shows that the sum of the reliability and unrehiabiiny
figure of a network 1s always 1 {as expected); however. roupding-
off of 10 D00 or more terms produces a lintle quanuzauon
error for large serworks. The values obtained further suppon
the correctness of our proposed aigonthm. Hence, rehiabity
(unreliapdity) vaiue of a nerwork can be obuuned from the
computed uareliability (retiability). The resuits show that CAREL
is capable of evaiuaung both retiability and unreiiabiity vaiues
of large distnbuted system nerworks.

V1. CONCLUSION

We have proposed an efficient algonthm cailed CAREL. wmich
compules the terminal reliability or unreliabiity of moderate
to large sized DCS aetworks with modest memory and ume




Fig. 17. ARPANET [14].

Fig. 18. Reduced form of Fig. 17.

Fig. 19. 20-node, 30-link petwork [10].

requirements. The aigorithm has been implemented in C and
w3s run on an Encore MULTIMAX 320 system. The perfor-
mance of a program is usually based on the aigorithm, the
data stucture and the langusge used, the computer on which
the program is run, and last but not the least. the coding of
the program (8]. Sioce different programmers produce different
codings for an aigorithm, the buman factor (in want of sufficient
data) is inappropriate while comparing various techmiques. A
benter impiementaton or faster machine wouid increase the
performance of a program, but only w0 a factor of 10 [11].
Moreover, all methods of reliability computation are known 10 be
computationally intractabie or NP-hard, which makes difficult to
compare the techniques from the aspect of complexity {2}, (9],
{10}, [26], [27]. CAREL is faster than other existing Booiean
algorithms. This is obvious from the CPU ume requurement
for solving the terminal reliability/unreliability of vanous DCS
nerworks. Note, the CAREL combines the advantages offered
both by SYREL {1] and the method given i (3]. Presently, we
are utlinng CAREL to heip compute the reliability ssues of
multiprocessor system {6], [28), [29]), (30]. An earlier version
of CAREIL has successfully been applied o soive reliability
probiems in one type of redundant path MIN [19].

Z2Z TRANAITS

N> N PARALL L WOD LISTRIBLO TED SenTRNL - ae o -

TABLE Il
COMPARISON OF CAREL WITH VT /181 FOR TPV TIME anp
DISIOINT PATHS

: VT8 CAREL P 1y
¢ Networx . UG
: DPan © Timets) - DPun Time 31
[V e wen | s 00 « 0978380
toove 9 | 00 ¢ - 30 ! 0.96B4aLS
LoV i 0.0 | 3! 0.1 i 0.997632
Loy 16 | 01 | 16 20 1 0977184
e S 16 | 02 | 5 91 | 0.96485¢
vie oo | eee | B Sl 0996668
V110 82 3| | 02 | 0994076
R paf 0s | 30 0.1 | 0969112
i3 a1 12 | 39 0.1 | 0975116 |
g ves se 3 0.1 | 0.984068
NB soe see 50 | 0.1 | 0997494
vz e 30 7 o1 | ossea7
NP 7 742 42 05 | 099mss
Njd 93 168 108 | 02 I 0.904577
Nz % 9.1 &7 02 | 0974143 |
N2 305 738 309 | 05 | 0.997506
N ses vee 291 62 | 098s92s
N 2085 | 8783 | 186 36 | 0987390
1) Run os & Convex C1-XP system. !
2) Run on an Eacore Muinmax system. '
Link Reliabaity = 0.9. i
*ee= Resuits 0ot known.
Time s i CPU secounds.
V. APPENDIX

Proving CoRrRrzCTNESS OF CAREL

The CAREL uses four operators. aamely COM. RED. CMB
and GEN to transform an expression of paths {or cuts) intc
an eguivalent exclusive and mutually disyoint (e.m.d.) cxpres-
sion. The COM operator defines conditional cubes £,'s for a
F,, while RED removes redundant £,’s t0 prownde ounima
conditional cube (MCC). The operanon CMB combines MCC
to generate disjoinnng terms (DT's). The DT's are munal®
disjoint. Moreover, the F, and its DT's (refer w0 GEN operator
form expression which is disjoint with ail other terms w (1)
In what follows, we discuss that the CAREL always generate:
e.m.d. terms (DT's) for an F,.

Section [I-B1l describes COM operator. A condiuoonal cut
E, considers “a” elemeats of F, which are pot present in £,. Tt
represent £, DOWN (refer w Secnon [I-A), our aotations us.
-a‘ in the positions of the vanable (here the wdex [ is equal t
7)- Considening CAREL (Secuon [V-A), it 1s obvious that CO?
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TABLE 1V TABLE V
COMPARISON OF CAREL USING P T AND P {l FOR CPU ame’ anD COMPARISON OF EVALUATING RELIABILITY OF 4 NETWORK FROM
DISIQINT PATHS PATHS AND CUTS USING CAREL :P (I
1 | CAREL(PD |  CAREL(PID i : PATHSET CUTSET
Nerwork ‘ . : RICY | Netwond
| DPath | Timeis) | DPan | Time(s) % i OPam ! Time ; AGE ¢ OCu ! Time Q&
P s | 00 | s) o ool o.masoj N{o| sl nojosmsa 4] w0 | 0o2si
Lo B Y 7 00| ogesexs | | v | 7| ooiogesast il 20 003187
vy 1: 1 | O | | ool osen v | uj a0 [ o633 0] 00l sc0es
i R 6 | 0.0 16 | 00 | 097718¢ vyl s 20 {ogTnga s | 00 | o036l
r vE o ts | 01 | 15| 00 | 0.96e8s5 va | s 00 | 09esgssi 01 o1 | 0.03siasi
PN 3 | 0.1 3 | 0.1 | 0.996665 Ne o3 01 | 0.99e6es| 2 2.1 | 0003335}
vyo % | 02 94 02 | 0.99%4075 o % 02| o%eard 550 02! 0o0sone
N 30 | 0.1 1 01 | 0969112 Vi | | otfossud | o | 0.03088s)
g | | 0.1 39 0.1 | 0975116 vy 39 0.1 f o975 40| 01 | 00zessal
Ne-d 34 0. 3 0.1 | 0984068 VB 3 0.1 o.woaal; w0 | o100
R 50 01 50 0.1 | 0.997a9¢ v 0| o01]oserasd 30| ou| aoozsos
v | 76 0.1 76 0.1 | 0996217 vz | o1fossend 7| 01| 000
vme | sa 0.6 542 03 | 099786 NE | s | 03| osemsg 1319 | 12| 0.002814f
V3B 105 02 108 0. | 0904577 vis 10 o1 | osoasT] 3367 | 2e | cossens)
v 87 02 87 0.1 | 0974145 N 87 01| 0s7a1es | ox | ooasass|
v 309 05 309 02 | 0.997506 va | 9| o2osmsd | 22 oooeese
vgo |z s2|  2m 15| 0985928 | | vgm | 21| 15| osmses wss2¢ | w6 | aoreomy
ovae | s 36| s 06 | osemso | | vgy | mes| o0s|ossmeo 9| os | oosiol
g | e | e ] sa2 se | osomao | | vEP | sz | se | osomaol e | g | oo0ssol

1) Run on aa Encore Multimax sysiem.
¢ Link Relisbility = 0.9.
**** Resuits not known.
Time s 10 CPU seconds.

obtains all possible £E,'s for aa F,.

Lemma A.l: Assume two conditional cubes £, and E, of F,.
U E, = E, then E, is recundant O

The RED operation implements Lemma A.J and is performed
for all (E,, E.) pairs. Note, the definition in Section [I-B2
checks out ZZ = %, and TEY) = T type redundancies. The
nonreduadant £,s form MCC. Besides removing redundancies,
the RED operator partitions the MCC into IG's and DG’s (refer
to Section 1I-B3). Thus, the RED speeds up the computaton
time of the CAREL. The CMB operator for independent group
(IG) uses T « § = Z7 iteratively. As is obvious from Theorem
A.1 (discussed later), T « 7 is a special case of X;* « X’ Here,
we assume that 10 common elements are present with z and y. (z
and y are incependent.) The CMB operator for dependent group
(DG) uulizes lemmas and theorems mentioned below.

Definuron: An X, represents a cube which could be an MCC
E,. or the one produced dunng CMB operation. Far notational

1) Ruo on an Encore Multimax system.

+Ligk Reliability = 0.9.

ttlink unreliapdity = 0.1.

DPats (Deut) refers disjount path (disjoun: cut),
Time 18 s CPYU seconds.

convenience, consider X° = X, (X.), when ¢ = 1 (0).

Lemma A.2: Assume 7,73, -, T, represent k parinons of
X,.

Then X = (D T3 T3 )°

(ML T) o=l

X (B.of 0% - NLT) e=0
Proof: For ¢ = 1, the result is obvious. With ¢ = 0,
DeMorgan's complementation {aw is rewniten so that the list
of T,"'s is collectively exhausnve. O
Theorem A.l: Consader [, L (J, K) as 2-parations of X, X. .
We have X7« X7" = (L) (JK)* . The terms (JL} (K% s
D XFXS, when X, N X, = o 1eX, and X, are

)t

independent.




&3}

D4 wnea X7 X = oo el = ) Thus, L= )
renresenls 3 COMMON (ermm derween .\, and ¥,

For vanous comoinations of 2, and ¢., 4" s aotained as

NCase! ¢, = ¢, = L A=I[/K
i) Case 2: c. = U0y 2 = O(1i]
A 2 I K=o
T UK LK =zo
i) Case 3:7c, = 2, = 0. A= JTR.

<

Proof: For X, 7 X, = 0. X7 « X[" = XX s staight-
forwara. Use Lemma A.2 to show the resuits s Cases 1=3.
With ¢, = ¢, = 1 and L = J, Case | is obvious. For
=l =0X X" sUNTor UNT.J B A
resuit :J.J ) (JK) follows sumlarly when ¢, = 0.¢c, = 1.
Thus. Case 2 of Theorem A.l s proved. For ¢, = ¢, =
0.X7 = X" = TN (JK). Using Lemma A2, we interpret
this result as (7. J 7)(J.J &) which after applying a Booiean
idenuty [20] produces (J.JT K).O

Lemma A.3: Note, X s 0 = 0« X = ¢, where ¢ is 2 null ser,
and X represents any (erm.

Proof: Using Theorem A1, the proof is obvious. T
Theorem A.2: For X, X;, X;, the CMB operator produces
X\ X: » X; =GF(H.HI ) where G, F (I. H) represent

2-parnuons for X, (X;), and F, H, J are 3-partitions for X;.

Proof: Note. .{, X is a term obtained considering X7 » X

in Theorem A.1 and represent mutuaily independent terms. i.c.,
X, and X, will have no term in common. Using Lemma A.1,

(X1 X7+ X;) is shown to be equal to (G F TH . Theorem
A2 is proved after appiying Lemma A2 (O

From Theorems A.l and A2, it is clear that if we CMB
k ourmber of X,'s, we may generate 2 term of the type X
XT3 .- Xi*. An uterative appiication of these theorems solves

(XD X XD X ) o (X7 XT) as (dots (X7 e X7 )« X3
...} = X' Note, a CMB obtains e.m.d. events [we have cailed
thern as DTs).

Finz!'y, GEN combines the F, with the disjointing terms DT"s.
The operator utilizes five out of 12 possible combinanons for
(=3, 0. 1) aiphabets and is demonstrated to be complete (refer
to the text). Hence, the algonithm CAREL is proved to be correct.
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Summary & Conclusions — The paper presents a computer
approach to obtain a survivability index called capacity refated
reliability (CRR) in large teiecommunication networks where links
have different capacities. The proposed method is a 2-step ap-
prosch. Step 1 deais with composite path enumeration (CPE). A
k-composite path is defined as the union of the set of edges io any
k simpie paths and reiates link capacity and network connectivity.
The CPE approach, presented in the text, is an improvement over
the algorithms of (1}. Step 2 manipulates k-composite peths infor-
mation to generate the CRR. The paper ases CAREL (4] to soive
this step. However, any existing techniques based on Boolean con-
cept, probability theory, inclusion-exclusion principle, etc, [2-7]
may aiso be utilized. The technique is automated using C on Ea-
core Muitimax System. The results on CRR for three networis with
various values of minimum message capacity are presented in
tables. An exhaustive technique is used to verify these resuits.
However, an informai proof of the CPE approach is also includ-
ed. Appendix A provides the impiementation details of the tech-
nique. We have given counter exampies (refer to Appendix B) for
the aigorithms of (10, 13} to show that these methods lead to in-
correct conciusions under certain situarons.

1. INTRODUCTION

To obtain the survivability index of a large telecommunica-
tion network. the network is modeled as a probabilisuc graph
G(V.E). nodes (V) identfy communicaang centers, and links
(£) represent connecuon services. Various measures for sur-
vivability index are presented in the literamre {1-17]. They are
characterized by different operational environments (OE) in

This work has been paruaily supported by the US Air Force
Office of Scienufic Research under grant AFOSR-91-0025. A
Prelimuinary version of this paper was presented at the 1991 An-
aual Reiiability and Mantaipabilicy Symposium {1].

whuch the nerwork carnes out its desired operagon. As an ex-
ample, :n message switching or virtual circut packet swichung
nerwork, we need to establish a node 1 node coanecuon in
G(V.E). As long as thus "connectedness’ property of the net-
work 15 maintained, one may successiully transmul messages
{packers) through the nerwork even if some of the nodes and/or
links in G(V.E) fau.

A network is generaily validated for the connectedness of
its OE by enumeraung sumple patns between all aode pairs. [n
such siuagons, link capacity 15 often ignored or umpliciiy
assumed to be equal and also large enough 1 sustain Tansmus-
sion of messages (packets) of any bandwidth (size}. This
assumpnoan is unrealistc. The link capacity is a function of cost,
and is limited. Each link in G(V E) may have different capac:-
ty. Moreover, there may be a mumimum message capacity
(Wga) requirement through the nerwork. Obwiously, the
measure of connectedness using simple paths is not enough w0
validate this form of OE. This paper defines the concept of a
k-composite path which captures the effect of message band-
wndth, link capacity, and nerwork connectivity. Note, a com-
posite path sansfying an OE, where requisite amount of message
bandwidth is also made available dirough the network having
heterogenous link-capaciues, is a success state of the network.

Recently, a few researchers have addressed the problem
of capacity reiated reliability (CRR), or combinng link capacity
with terminal reliabilicy. Doulliez & Jamoulle (8] have applied
the decomposidon principie to calculate the system reliability.
They decompose the whole state space ino three categones:
a set of funcuomng states, a set of failed states, and a set of
undeterrmined states. Each set of undetermined states 1 again
decomposed into three categories, and so forth untl the set of
undetermined states is aull. This implies keeping track of
numerous sets of undetermined states as well as the relevant
upper and lower liminng states of each set. Hence it requires
large memory sizes for large systems. Lee’s techmque {9] uses
a labelling scheme o route the flow through the network. [t
is. however, suited to acyclic graphs only. Its adaptauon 10
mixed and cyclic graph imposes a problem because of the ex-
istence of feedback {an unswiable situanon for the iabelling
scheme]. Misra & Prasad [10] unlize a failure path list w0
enumerate a term like composite path defined in the text. The
success of a 2-composite path is tested against a piven W,,.
Next, the method [10] proceeds with the failure paths which
have not produced any success l-composite paths, and com-
bines them to generate higher order composite paths. Each itera-
uon checks for success using W, and removes the sumple
paths which have already combined to produce success com-
posite paths. The method [10] terminates when no more sun-
pie path 15 available to generate k-composite paths. A counter
example, presented in Appendix B, proves thar (10] fals i
general to give correct result. Moreover, (10] does not provide

0018-9529/91,1000-0441501.00©1991 IEEE



any procedure (o compute the capacity of 1 composie path
which. 10 tumm, s useful to decide the success or falure state
of the nerwork. Recendy, [12] proposes a techinique to generate
the CRR. Aggarwal [13] menuons that the method 1n (12} lacks
generaiity and provides incorrect results. We have given a
counter example (refer 10 Appendix B) to show that the
algonthm 1 {13] leads w0 2 wrong conclusion too. The basic
problem with (12,13] lies in the procedure used o compute com-
posite path capacity. Le & Li (20] have addressed the problem
of reliabuity of networks with dependent failures and multimode
components. They assign link capaciues and obtain a numerical
figure, not the reliabuiry expression, for the network. Ras, ¢t
al {11) and Rueger {14} have proposed aigorithms which ob-
tain a symbolic CRR expression under a capacity constraunt.
However, thewr algonithms suffer from we drawback of
generanng a huge number of redundant paths/cuts, They are,
thus, impracucal even for moderaie sized graphs where the
number of paths is more than ten. Recenty, Ra: & Soh {1] bave
proposed two algorithms to enumerate composite paths. The
composite path enumeraton technique, presested in tdus paper,
is an mprovement over the algonthms of {1]. Secton § pro-
vides a detailed discussion.

The layout of the paper is as follows: Section 2 describes
the background matenial. Section 3 presents composute path con-
cepts and the issues related to its enumeration. It also wtroduces
several definitions and theorems which are useful in reducing
the complexity of the composite path enumeranon (CPE) ap-
proach. Secton 4 descnbes the CPE technique that 1s further
llustrated by an example. An informal proof of the algorthm
and its ume complerity analysis are 2lso given in this section.
Section 5 discusses the experimental results on the CRR index,
obtained using CAREL[4], for three networks with various
values of W_,,. Finally, Appendix A provides an implementa-
uon technique for the CPE aigonthm using bit vector represen-
tation and Appendix B gives the counter examples to the methods
(10,13}

2. PRELIMINARIES

In the graph model G(V.E) of a wlecommunicanon net-
work, coasider an edge j has a finite capacity w; which is
known a priori. Let [ be the total number of edges in G(V.E).
A flow 1 a network is a funcdon assigning a non-negative
aumber f; 10 each edge j so that f; Sw;, and for a vertex (that
is nether source nor termunal) the in- and out-flow are the same
(flow conservanon). Note, w; provides a bound oa flow pass-
ing through edge ;. The network is good if and ouly If 2 specafied
amount of signal capacity (W,,,) can be ransmined from the
\nput to the output node or {5./) node pair.

An edge ; is said to be UP (DOWN) if it is functioning
(failed). An UP (DOWN) edge 1s denoted by / (/). An (5.7)
cut 13 a3 disconnecung set. All commumcanon between a
prescnibed (s5.7) node pair 1s disrupted once the edges i (5.7)
cut fail. Aa (s5.0) cut i, C, 13 mummal if no proper subset of
it represents a ‘cut’. The cut set C,, is the set of all mummal
cuts for the graph (V. E). Let the total number of cuts be n.
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The capacity of a cut set, W(C,), for a mumimal cut C. s the
sum of capaciues of edges wun C,. From max-ilow mun-cur
theorem (18], the maximum capacity tlow, #,_,, through the
graph G(V.E) is:

Woay = mn{W(C)}. ()

As an example, consider a bridge aetwork shown 1n figure 1.
The cut set C,, 1s {(1.2), (1,3.5), {2.3,9), (4.5)}. Using {18},
the capacides are ¥(C,) = 4. W(C) = 19, H(Cy) = 12,
and W(C,) = 7. Here, edge capacines are wy = 10, wa
4, wy =S5, we = 3, and wg = 4. Now, using (1), W,
min{l4, 19, 12, 7} = 7.

[}

(3)

2 (4)
(4 [

Figure 1. Bridge Natwork
{The link capacrty is shown within ().]

A uimple path i, P, for an (£,7) node pair is formed by
the set of UP edges such thar no node is traversed more than
once. Note, any proper subset of simple paths does not result
in a path between these two pode pawrs. The path set P, s 2
set whose elements are simpie paths. Let m be the total qumber
of simple paths in G(V.E). The capacity of a simpie path £,
W(P,), is obtained from the capacities of UP edges contained
in P, and is [11]:

W(P) = min
J:1€{P}

{w;}. 2)
The capacity for path P, = (1,4) in figure 1 is #(P,) =
min{w;, w,} = 3.

FW(P) 2 Wy, the P, in additon 0 sansfying the con-
DECTVITY requirements, fulfiils the capaciry constraint too. The
path P, is, then, called a success state of G(V.E). Otherwise,
the P, represents a failure state. Notwe, in the event that edge
capacities are infinitely large, ail simple paths form success
states because they do provide (s.7) commectivity, and their suc-
cesses ensure the network success. However, for a fimiee capaci-
ty simation, all simpie paths may or may not lead to the suc-
cess sates of G(V.E). Depending on Wy, some or all sum-
pie paths may fail to satisfy the capacity constraint. Thus, sum-
ple path (mimmai cut), an important concept in terminal reliabili-
ty, has o be revisited while considering the CRR measure. The
concept of composite path (introduced in Secton 3) 15 a step
i this direction.
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3. COMPOSITE PATH

3.1 Concept and Issues

Derininion: A k-composite path CP,{k) is defined as the umion
Of set Of edges 0 any « sunple paths P's, where ¢ € /, and

—

(1sksm). —

Note, a k<omposite path describes a subgraph of G(V.E).
Moreover, all simple paths represent k~composite paths where
k=

Example. Consider the bnidge nerwork in figure 1. The path
set P, of the network is : 2, : (1,4), Py: {1.3.9), Py (2.5).
and P, : (2.3.4). From the P,, we generate the 2-composite
paths:

CP,,2) = (1.3,4.9), CP,42) = (1.2.4.5),

CP, (2) = (1.2.3.4), CP;5(2) = (1.2,3.5),

CP, «2) = (1.2,3.4,5), and CPy (2) = (2.3,4,9).
Lemma |. For m simple paths representng (s.f) connectedness
of the network, the total number of possible k-composite paths

is (2" -1). c

Mista & Prasad’s technique {10] reduces the generation
of all (2™ - 1) possibie k-composite paths, However, a counter
exampie (1 Appendix B shows the method in (10] lacks generati-
ty. Another problem in composite-path enumeration stems from
the capacity computation for the CP;{k). The capacity of 2
simple path W(P,) is obtained easily from (2). However, we
need o devise an efficient techmque o ger the capacity of a
CP,;(k) for k > 1. Ref [10] does not discuss any method.
Papers {12.13] have proposed techniques to heip obtain the
capacity of a CP;{(k). However, [13] mentons that the method
in {12) is not correct. Appendix B provides a counter example
10 show that {13] also fails to generate correct results under cer-
tain situanons. We provide a lemma to evaluate the capacity
of a composite path CP,(k), for k > 1. For this, we inwoduce
the concept of Composite Path Cut (CPC).

Defirurion: A CPC,(j) is a modified (s.7) cut C, for the graph
G(V,E) and is defined for a composite path CP,(k). The
CPC;(j) 1s:

CPC,())

=CPk) NG ij=1...a 3
c

Since a CP,(k) describes a subgraph of G(V.£), the CPC,(j)
represents a cut for the CP,(k) induced graph. The failure of
the edges in the CPC,(j) leads 0 CP;(k) commumcaton
disrupuon between a prescribed (s5.r) node pair. Note, there
exists n aumber of CPC,(j)’s for a composite path CP,(k).

Lemma 2. The weight of a composite path, #{CP,(k})), is:

W(CP(k)) = mun [W(CPC,(G))} @

GNOOF TELZCOMMUNIC AT
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where W(CPC,(j)) represents the weight of a CPC,{;) and s
obrained by appiying (1) w vanous CPC,{y)’s. Note. for k=1,

Lemma 2 gives the same resuits as obtaned by (2). -
Example. Consider figure 4 and mable [ where a composite path

CP/{2) = (1.2.5.6) has CPC,(y)s as {(1.2). (5.6). (1,5),
(1.5), (2.6). (5.6}, (2.6)}. The weight of the CP;(2) 1.
thus, 11 wnuts.
TABLE 1
Pathset and Cutset for Figure 4
Parhiset Cuzves
Py = (1,6) C, = (1.2)
P2y = (2.9) G = (5.6.8)
Py = (1,7.8) Cy = {13.5.8)
2, = (13.3) Ce = (1,3.4.9)
Py m {2,4.8) Cy = (2,3.6.7)
Py = (2.3.6)
P = (1,457) Co = (45,6,
Py = (2,3.7.8) C, = {2.3.46.8)
Py = (13,438

Definition: A composite path CP;(k) is a success state of the
petwork if it sausfies the capacity or flow constraint:

W(CP/(k)) = Wy, 5

Otherwise, the CP,(k) is a failure statwe. Moreover, a CP,(k)
is defined as a redundant stare of the network if there is at least
one success state CP;(u) such that CP,{u) & CP,(k). T

Definition: A cross_link;(k), defined for the composite path,
is the set of links common 0 the & simple paths forming me

CP,(k). -
Defoution: The weight of a cross_link(k), W(cross_link,(k) ),
is computed following (2). =

The noton of a cross_link and its weight are used to detect a
failure k-composite path a pniori.

Zheorem 1. CPy(k) is a failure state if W(cross_link,(k)) <
Won, for cross_link (k) = &. =

Proof. Since every element in cross_link; (k) is a link in all the
k paths that form the CP,(k), the flow in CP,(k) is limuted to
the weight of the cross_link,(k). Q.ED.

Thus, before generacng the CPC,(j) set for a CPy(k), use
Theorem | t0 see if the CP((k) is a failure state. Obmin the
CPC,{j)s only wher the cross_link concept fails o detect a
failure state. This bappens when W{cross_link,(k)) 2 Wo,
or the k simple paths bave no links in common. ie,
cross_Jink; (k) = &. Injgally, each cross_link;(1) of CPi(])
is given by simple paths in F_ser(1). Later, for each CP/(k),
update the cross_link,(k) by miang the set theoretic intersec-
tdon of two cross_link's of CP(k—1)s that merge wmnfto
CP’(k)S.




3.2 Development of the Techmique

The proposed CPE aigorithm starts from the faidure paths
and unlizes divide and conquer strategy to reduce the compiexity
of the problem. In Secuon 2, we discussed success and failure
states of a setwork from the aspect of simple paths. For a given
W o Capacity, first, test all simple paths and parntion them into
funcuoning (S_set) and non-functoning (F_set (1)) groups.
Let the number of elemeants in F_set(1) be 3. The F_set(1)
is then used w obtain k-composite paths, | <ks3. Lemma 2
(and the defimition following the lemma) s unlized to parttion
CP,(k)s into the S_set and F_set(k) categones. Note, both the
S_setand F_set(k) can have many redundant terms. The redun-
dancy (duplication and absorption) 13 checked easily with the
help of a Boolean identdry AU AB = A. However, if special
care is taken in the enumeraton procedure, many of the redun-
dancies can be avoided in the first piace. We have observed
that the gumber of redundant composite paths is reduced when
the concept of path composition is recursively applied oaly to
the failure states of the nerwork. Additonally, use a path_graph
PG(V,E) w0 obtain higher order (k > 2)compositons.

Figure 2. S-Node, 8§-Link Network
[The link capacity is shown within ( ).]
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Figurs 3. Path-Graph PG(V,E)

Figure 3 illustrates a path_graph PG(V,E). Here, a node
P, belongs w F_set(1). An edge joining any two nodes P, with
P, is defined by a 2composite path in F_seq(2). Note that P,
PP.(PPPP,) generates a 3(4)-composition. It is reflected
by a 3(4)-node compiete graph or clique {19} in PG(V.E). In
general, a j~composite path is a jclique in the path_graph. The
probiem of composite path enumeration is, tyus, stmilar w© deter-
mining cliques in PG(V,E). Note, each state in F_set(j) 1s a
clique. Thus, generating higher order cliques is straightforward.
Two (j—~1)-cliques may form a j<lique. Take XOR set

AN RELIABILLTT bl W

theoreuc operaucn on the eiements of the 'wo .ower drder
cliques. If the result :s an edge 2 PG(V.E), e wo <)~ i }-
ciiques produce a jclique. The elements of the j-clique are 0p-
tained by using union set theoreac operanon on the slements
of the (; — 1)-cliques. This process is further explained :n Sec-
non 4.

3.3 Effictent Generanon of 2-Composite Paths

Algonithm | in {1] generates 3(8 ~1)/2 2-composue paths
or links 1n PG(V,E). To further reduce the compiexity oI this
algonthm, we use the conceptss of key_cur, kev_iinks, and
path_groups defined as follows.

Defirurion: A mummal cut C, is defined as key_cur if: 1) w, <
Won, for all ; € C, and ) (w; + wy) = #,, for at least
one j, {pawr. j, [ € C. -

Conditon 1 is required. while condition i [{w; + w;) = ¥ ]
is umportant as 1t helps idenufy the failure composite paths a
prion. If condidon ii fails ((w) + wy) < Wgy, for all ), / pair)
the 2-composiuons become failure states for the network. All
failing simple paths are, then, used to generate 5(8—~1)/2
failure 2composite paths as discussed in subsecnon 3.2. To i-
lustrate a key_cur, consider a minimal cut (4,5) for the bndge
petwork in figure 1. Capacites of links 4 and 5 are individual-
ly less than W, { =6) while the capacity of the munimal cut
(4,5) is greater than W,,,. Thus, the cut (4,5) represents a
key_cut.

Definition: The cardinality of a key_cuz (denoted as |key_cusi)
is the wwal sumber of elements in it. Select C, as a key_ca if —

i. C, is either a source-node or terminal-node cut. If not,

C; should have at least one link connected o the source or the
terminal node, and

. |G| is minimum. If |G| s equai for two or more

terms, take arbitrarily one C,. -

Definirion: The elements of a selected key_cur are termed as
key_links. _
Definirion: A path_group G(n) is the set of failure paths. each
of which contains a key_link 1. -

Without loss of generality, a failure path which contains two
or more key_Jinks, {a,...,n,...,v} is assigned 0 a path_group
G(n), where n 15 lexicographucally smailest of {a,...,n,....7}.
This ailocanon strategy 1s useful o mumimize the oumber of

path_groups generated.

Exampile. Consider all four simple paths (1.4), (2.5, (1.3.5),
2,.3,4) in figure | as failure states. Grouping them with
key_links 4 and 5 we have:

>

—

G(4) = {(1.4), (2,3.4)} and G(5) = {(2.5), (1.3.9}.
Theorem 2. A k-composite path CP,(k) withun a path_group
G(n) is a failure state. -

Proof. From the definition of a path.group Gin). a
cross_link,(k) obtained from the CP,(k) contains at least one

~——
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key_link. Using Theorem 1 and the defimtion of a key_cur, the
W(CP,(k)) is less thag W, Q.ED.

Theorem 3. The upper bound on the number of 2-composite
paths is:

ke
E 88 imj, i<].
W

Here 3; and 3; are [G(i)| and |G(j)|, respecuvely. More-
over, S.' 8, = m (or 8) and v 1s the total number of groups.iZ

Proof The number of 2-composite paths N, is

2 3
m
€ — - 32

which, if solved, gives the result. Q.E.D.

Theorem 4. The number of k-composite paths ¥, is bound by
Ny/Ny—y S m—k+1/k, where V,_, represents the number of
(k- 1)-composite paths. ]

Proof. For the upper bound, Theorcm 4 is true considering Ny

and N,_, as binomial coeﬁimenrs &'

3 shows that ¥, is less than (’2") 3/1\}2<m 2/3.
Q.ED.

Note. to generate k-composite paths (k>2), we also have
1o consider all (k—1)-composite paths formed from the
elements within a path_growp. We call the sex of such composite
paths an F_set_ dummy (k—1). Although all states in F_set_
dummy (k- 1) are failure states (refer to Theorem 2), they can
generate success states to obtain higher order states (cliques).

4. COMPOSITE-PATH ENUMERATION TECHNIQUE

4.1 CPE Algorithm

Utlizing concepts in subsectons 3.1 through 3.3 a CPE
algorithm is developed as foilows.

1. Read input files having
» path set and cut set;
« link capacites wy, for j=1.....5
o W
2. Get Wo, = min{™(C)};
if (Wpe<Wan) thea goto 5;
3a. Determune success/failure states from path set; create
F_sey(l) and S_set for failure and success paths,
respectively;
3b. If (|Fseul)|>1) then
find a key_cut;
else gow S
3c. If (key.cus exists) then
begin
create path_groups.
generate CP,(2)’s using the path_groups:;
create F_set_dummy(2) formed by 2-composite

paths within each path_group:
end;
else

generate CP;(2)"s directly from F_set(1);
F_serdummy(2) = { }
end;
3d. Determine success/failure stares for all CP/(2)s: /* use (4) */
append non-redundant success, CP;(2)s to S_set;
append non-redundant failure, CP,(2)s to F_set(2);

4. Inidalize PG_set = F_seu2) U F_ser dummy(2);
for ((k=3...3) and (|F.set(k—1)|> 1)) do
begin
/* Use PG_set w test for a k-composite path
followng the method descnibed in subsecuon
32
generate non-redundant CP;(k)’s from F_set(k—1);
generate non-redundant CP,(k)’s from combination
of F_set(k—1) with F_set_dummy(k-1};
/* for each CP/{k) */
if (W (cross_link;(k)) <
success = FALSE;
else
begin
obtain CPC,(j) set for each CP,(k);
‘f( mm {W(CPC/(j))}) & Wy then
mewss = TRUE; /* CP/(k) is a success °
end
if (success) then
append the success CP,(k) w0 S_set;
else
append the failure CP (k) w0 F_set(k);
create F_set_dummy (k) from F_set dummy (k—-1);
Fset(k) = F_set(k) U F_set_dummy (k);
end;
S. end.

W) then

4.2 Proof of Correctness
The CPE algorithm solves two main problems:

1. Generating sufficient number of CP(k)'s which
should lead to all possible success composite paths wn a network.

2. Evaluanng the capacity of a composite path 10 check
for success/failure states.

In whar foilows, we show that the CPE algorithm always gets
a solution, if it exists.

+ Correctess proof for solving problem 1.

Lemma 3. Let CP,(k) and CP,(¢) be success states. If CP,(k)
@ CP(c) then CP,(¢) is a redundant success state and,
hence, need not be generated. -

The CPE algorithm starts from failure simple paths. Foilow-
ing Lemma 3, we need not generate higher order of composite
paths from success simple paths. The CPE algonthm generates
sufficient CP,(2)’s 10 obtain all possible success CP;(2)'s
(refer to subsection 3.3). For generating higher order states.




the CPE unlizes path-graph PG(V,E) whose nodes and links
are F_set(l) and F_seyl), respecavely. The problem of
enumeraang 3- , 4 x-composite paths s conceprually
equivaient 10 generaung 3-, 4 ..., <-cliques wn the path-group
PG(V.E). Foilowing Lemma 3. it is obvious that if kev_cur does
not exst, the CPE aigonthm generates sufficient k<cliques since
it always generate k-cliques from ail combinazons of failure
(k- 1)-cliques. When a key_cw exists, the CPE uses key_cuz,
key_links. and path_groups 10 recogmuze some failure composite
paths a priont. Since the CPE maintauns F_set dummy (k) to
keep those "predicted’ failure k-composite paths and later uulizes
it to form (k< 1)-cliques with F_set(k), for this case, the CPE
also produces sufficient k-cliques.

» Correctmess proof for solving probiem 2.

The algorithm uses (2) (a special case of Lemma 2) and
Lemma 2 w0 evaluate the capacity of simple paths and
CP,(k)’s. respecuvely. Note a k-<composite path is a subgraph
of the network G(V,E). Following the definition of CPC{;)
(refer w subsecuon 3.1), it is obvious that the CPC,(j) set
represents the cutsets for the CP;(k) induced graph. Thus, by
using max-flow min-cut theorem {18] on CPC,{j), we obtain
the max-flow or capacity of the subgraph CP;(k).

.....

4.3 Compuarnional Time Complexiry

It is shown in [3] that network reliability is an NPcomplete
probiem. The CRR problem is a network reliability problem
and, hence, it is difficuit to compute its complexity. The CPE
technique 1s an algorithm whose performance depends on the
number of CP;(k)'s generated, which in turn relies on the
topology, link capacities, and minimum message bandwidth
(Way) for the given network. Note, Appendix A provides the
subrouunes that are used to0 implement the CPE technique, and
shows that each subroutine is a polynomial tme functon. In
the following, we give the complexity of the CPE aigorthm
using some notation defined below. For a given network and
a cermain state k. let g, and h, be the number of non-redundant
success and failure CP,(k)'s, respectively. Let 7 be the wtal
number of redundant CP,{k)'s enumerated in the network, and
K be the highest k-composition generated ie, | Sks K. Note,
in general. K is less than the total number of paths m. The total
number of states generated for a network is, thus, computed as:

£ c c
re Y, mrgeleg= ) goandh =Y A
km? k=2 km

It is obvious that g € m.

For each step k., each CP/{k) is first checked for its
redundancy against all success composite-paths and CP.(k)s
generated so far. Note, using set theoretic operaton, a CP;(k)
can be tested for its redundancy aganst any CP, (k) in constant
time. Thus. the ame complexity o detect the  number of redun-
dant CP/(k)S 1s:

(EEE TRANSACTIONS ON RELIABLUTY. «LL ), NG 3
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1, = O(rm' + V ’t"‘t)'
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where r, denotes the number of redundant states w step k. The
capacity of a CP,(k) is computed in O(n) (refer 10 Appendix
A) and, thus, the capacity computation for ail non-redundant
states enumerated is @iven as 7, = O(mn + An). Given s, and
r., the ime complexity of the CPE aigonthm is:

L
tm=t,+t¢=0(m+m'+Zr,htﬁ-im\
/
km

It is obvious that the boutleneck of CPE technique lies in the
number of failure k-composite paths & which can reach up 10
o2m.

4.4 [lustraning Example

70
1 (5 >
s 1{23) 6‘9’ 8l
2(6) .
5(12)
4 (10)

Figure 4, S5-Node, 8-Link Network
[The link capacity is shown within ().]

For figure 4, ler the link capacities be:

12 3 4 5 6 7 8
S 6 23 10 32

links

12 9 31 link capacity
Various assumptions are given in [1]. It is aiso assumed that
(s.1) path set and cut set be given. Table 1 illustrates these sets
of informaton. Using (1), we get o, = 11. The weight of
each path is checked against a given value of W, (=10). It
is found that none of the eight paths forms the success state for
the nerwork/system. One way to form 2-compositons. CP;
(2)'s, is to generate all (g = 36 composite paths of size
2. Alternatively, we may define a key_cur from the cur set. In
the present example, the cut C;, = (1,2) qualifies to be the
key_cut. Consider its elements 1 and 2 as the key_links, and par-
ttion the 9 failure paths into 2 groups as:

G(1) = {(1.6), (1.7.8). (1.3.5). (1.4.5.7). (1.3.4.8)};
G(2) = {(2.5), (2.4.8), (2.3.6), (2.3.7.8)}.
Here |G(1)}, and |G(2)] are § and 4, respecuvely. Thus, we

need to generate only (36-16) = 20 2-composite paths. They
are:
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CP,22), CP, 4(2) CPs2), CP3(2), CP.5(2), CP1.(D).
CP. #2), CP:4(2). CP;5(2), CPy4(2), CPy4(2). CP,5(2),
CPy(2), CP, 52). CPs «(2), CPy4(2), CPs1(2), CPs5(2),
CP- 4(2), CPyg(2).

Here, all CP;(2)’s but for CP, 4(2) are success states for the
network and, hence, we obtain F_set(2) = {CP4(2)}. Since
|F_set(2)| =1, we need not generate 3- or higher order com-
posite paths. Subsntuang for various CP;(2)’s from wmble |,
and deleang the redundancies, we obtin 8 composite paths:

{(1.2,5.6), (1.2.4.6.8), (1,2.5.7.8), (1.2.3.9), (1,2,4.5,7),
(1,2,4.7,8), (1,2.3.4.8), and (1,2.3,7.8)}.
Using CAREL [4], the CRR expression is:

CRR = pypapwps + PPpsPs(1~ 1) + pypoppips(l —ps)
+ P Ps(l =py) (1 =pys)
+ Pwpp PP (1 =p3) (1 =pg) (1 =py)
+ pw2pspps(l =py) (1 =pa) (1 -pg)
+ PwppPs(1=ps) (1 =pq)
+ pwp s (1 —=ps) (1 =pg) (1 =p1).

Substruting known values for link reliability p;’s. we obtain a
numerical value for CRR. For example, if p; = 0.9 for all {,
CRR = 0.799655.

S. DISCUSSION

The proposed CPE technique is simpie, and is implemented
in C on an Encore Multimax system. Tables 2a, 3a, and 4a il-
lustrate the oumber of failure simple paths, success states, and
reliability values (CRRs) for the nerworks shown in figures 4-6,
respectively. Various Wy, values are considered o generate
these sets of information. To check for the correctness of the
result, we have compared the success states obrained using our
CPE algorthm with those obtained by (1, algorithms 1 & 2)
and an exhaustive method. Note, we refer o (1, algorithms |
& 2] as Algl and AlgZ respectvely. For the exhaustive method,
we generate all possible combinetons of failure simple paths
(which equal to 2™ —~m | states in the worst case). Lemma
2 is used to check each of the srates © determine success states.
Delete the redundant terms, if any. The results generated from
our CPE algornthm exactly march with those obtained from
Algi, Alg2, and the exhaustve method. On Encore Muitimax
system, the CPU ame for different entries in ble 4a ranges
from 0.1 10 0.3 seconds, while it ook 27.6 seconds CPU time
(more than 4 hours real tme) using exhaustive method
(generaung 2% - 26 states). Note, for all j, min{w)} < Wy
S Wpe, since for Wo,, smaller or equal to mun {w)}, all the
simple paths will always be success states.

TABLE 2a
Resuits tor Figura 4

No. Vo Fadure Paths Success “RR ¢
t 8 ] 4 3.897407
2 7 9 9 0.806806
3 3 9 9 0.806806
4 9 g 9 0.806806
4] 10 9 3 0.799655
6 | 9 T 2.799064

TABLE 2b
Results for Figure 4 (Continuea)
CP,(k)s Generated

No Woe  Exbausave  Algl Alg2.CPE  'Saving’ of CPE®
1 6 26 36 36 7
2 7 02 RE ] 20 ]

3 8 502 m 20 0

4 9 502 n 20 0
s 10 502 3 20 !

6 11 502 n 21 3

Aink reliabiity = 0.9 for ail cases.

“The difference berween CPC,(k)s generated by Alg2{1] and CPE

TABLE 3a
Resuits for Figure 5

No ¥ om Fuilure Paths Success CRR ¥
1 2 5 13 0.971923
2 3 10 16 0.974977
3 4 13 29 0.949844
4 5 14 26 0.857353
b 6 14 15 0.815038
6 7 14 13 0.737874
7 8 14 3 0.586283
3 ) 14 4 0,449795
9 10 14 1 0.313811

TABLE 3b
Resuits for Figure 5 (Continued)
0(“’)! Generzed

No. Woe Exhausnve  Algl Alg2 .CPE ‘Saving’ of CPE*
l 2 % 2 2 5
2 3 1013 88 88 7
3 4 578 p+4) pog) 17
4 b1 16369 733 733 52
s 6 16363 1166 784 55
6 7 16369 1501 1043 ss
? 8 16369 1934 1436 55
3 9 16369 2139 949 125
9 10 16369 2160 1588 123

Aink reliablity = 0.9 for all cases.
“The difference between CPC,(k)s generated by Alg2{1] and CPE
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TABLE 3Ja TABLE 4a
Resuits for Figure 5 Rasuits ‘or Figure §

No W e Faiure Paths Success CRR* No. LA Fuijure Paths Suczess CRR #
1 M 5 3 9.9T7923 ! 7 hE3 5 3973058
2 3 10 16 0.974977 2 3 e 41 3.962361
3 n 13 29 0.949844 3 3 AL 4 0.962361
s 5 i 26 0.857353 4 10 15 3t 2.962361
5 s 13 15 0.815038 § 1 5 7 3.934972
6 ” 4 13 0.737874 6 12 s 12 3.934972
7 3 13 3 0.986283 7 13 p] :5 0.845304
3 ) 14 4 0.449795 3 ¢ 5 ] 2.691823
9 0 1s ! 0313811 9 15 pt4 i 0.691823

10 16 L} 15 0.691823
1 17 25 i 0648671
TABLE 3t 2 s = " 2 casson
Resuits for Figure 5 (Continued) i -
CP,(k)s Generated TABLE 4b
Yo W Eumussve Al AQLPE  Saving’ of CPE* Resuits for Figure 6 (Continued)
1 2 26 21 21 5 CP,(k}s Generaced
: 3 1013 88 88 7
3 3 8178 n7 77 17 No. Vo Exhausave Algl Alg2 . CPE ‘Saving’ of CPE*
4 s 16369 733 ™ 52
s 6 16369 1166 751 ss ! 7 23425 24 724 %0
5 7 16369 1501 1043 58 2 § 2B 108s 41 125
7 8 16369 1934 1436 55 3 9 2¥.26 1055 341 133
8 9 16369 2139 949 125 ¢ 10 2®as 1088 341 135
s 10 16369 2160 1565 125 $n 0 2¥as 1766 el 180
6 12 1326 1766 493 180
flink retiability = 0.9 for all cases. 7 13 25.26 3831 1308 120
*The difference berween CPC;(k)s generazed by Alg2(1] and CPE 8 14 Has 5368 2124 179
9 18 18226 5568 2124 179
10 16 2826 5568 2124 175
11 17 z:-zs 5653 2190 179
a ; 12 18 2826 5656 2195 179
Tables 2b, 3b. and 4b show the number of composite paths 3 9 2232 i 209 7o

generated to produce the non-redundant success paths for we
nerworks in figures 4-6, respecuvely, Note, the wtal oumber
of composite paths generated depends on the given value W,
and link capacitues of the network as weil as on the network
topology « 1d. bence, is difficult  determuine. The mbles com-
pare the performances of our CPE algorithm with Algl, Alg2,
and the ¢xhausuve method in term of the total aumber of com-
posite paths generated to obtain those success states of the get-
works. As anucipated, our CPE algorithm outperforms both ex-
hausuve and Algl [1]. Nouce that for a given value of Wy,
the number of states generated by the CPE algonthm and both
Algl and Aig2 are the same when key_cus dozs not exust in the
network. Excep for tabie 4b, the exhaustve method enumerates
all possible composite paths. To speed up our expeniments. for
figure 6, the exhausuve method generates only up o all possi-
ble combinanons of 6 simple paths (the nerwork has at most
4-composite non-regundant success paths obtained by our CPE
algorithm and both Algl and Alg2).

Tae last column of tabies 2b. 3b, and 4b display the ‘sav-
ings' of CPE method over Alg2 for various Wp,,. Since the
towal aumber of states generated in both methods 13 the same.
we compare theyr performances based on the number of
CPC,(j) enumeranons. Note, the CPC,(j)s generated for a

#ink rediability = 0.9 for ail cases.
"The difference berween CPC,(k)s genermed by Alg2[1] and CPE

CP. (k) involves all cuts of the network and, hence, are expen-
sive, especially for nctworks with many cuts. The number of
generated CPC,(j)s for the CPE ethod is ar most the same
as for Alg2. Refer w0 the difference berween the two wtal
oumbers as the ‘saving’ of CPE method over Alg2. By avoiding
generanon of some CPC,(j)s. CPE algonthm speeds up the
capacity evaluanon process of failure CPC,(k)s. Thus, the im-
provement of CPE over Alg2 is obvious.

The reliability vaiues (CRRs) are obtained using CAREL
[4]. From these reliability values we observe that there is
tradeoff between allowing larger flow in the nerwork (make
W larger) and the reliabulity of the network o carry out that
flow. And for certain values of Wy, we have a good bargain.
For example, in mble 4a, increasmng the W, from 7 w 12
units (71.4% increase) reduces the reliability of the network
uy only 0.038082 (3.9%). If we mcrease the W, from 8 to
10 unuts, the reliability of the nerwork 15 unchanged. which 1s
favorable for the user of the nerwork. On the other band. for
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7-Nodes, 15-Link Network
{The link capacity 18 shown within ().

Figure 5.
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Figure 6. 7-Mode, 12-Link Network
[The link capactty is shown within {).]

some- cases, increasing the W, by | unit may reduce the
reliability of the nerwork appreciably, which 18 of course un-
favorable. For example. in table 4a, increasing W, from 13
to 14 ums (7.7%) reduces the rehability of the aetwork by
0.153481 (18.2%). By udlizing the method presented in this
paper, we can get the best W, for certain network configura-
touns. Thus, the technique provides a novel approach for com-
paring the reliability of various candidate topologies having
hetzrogencous link-capacities,

APPENDIX A

CPE Implemertanon

Dara representation markedly affects the efficiency of
algorithms. Since the CPE algonthm uses a lot of set theoretc
operatons (such as union, intersection, XOR), the bit vector
data representation [21] is the best for its impiemenmtion. The
bit vector operation minimizes the memory used and helps the
program run efficiently. A path (cut) state in a nerwork with
{ links requures only liub(//w) x w bits of memory, for a word

size w. Considening w = (6, a path P, = (2.4.0.12.:7) s

represented as:

word | word 2
0000100000101010{000000000000000
msp b  msb b

For (-bit representanon, decoding/encording of data usually requires
{ tests of single bits as the worst case. Since i general oo ajl the
{ burs are ser, evennmaily we might have bemer performance, especzal-
ly when most of the set bits are m the same words. The followmg
subsecnons descnibe the demuls of the sieps listed n the CPE

algornhm (Secuon 4.1)

Al Read Files: Decode the imput flles mto the bit vector represen-
anon. We want w associate 2 pety with a certam name P.(i =
L.....m), and arrange the whole paths in a path lit. The capacry
of the links can be kept in an array of mteger, capacwy{L], for L

= 12....1

A2 Wog Computanon: When W, < W, the aetwork always
fails. The Wy, is defined as mmm{W(C,)} using (1). The worst-
case tme oompilexary mvoived is O(! x n), where n is the aumber
of aurs.

A 3a Success/Failure determinanon of paths: I is dooe as follows ~

for (all paths P,,) {
if (patk capacty (P} Z W)
Append P; 0 Sosets
eise

}

The path _capactty ( ) function will reazrn the capacuty of a peth
P. In (2), the capacity of a path is given as mm(capacny(L,]).
where L's are UP links in that path. The tme complexzty for AJa
is O(l x m).

A.3b Gemmg key_cur: The key_oa concept reduces the mumber of
states enumerated and, thus reduces the nmming ame of the CPE
aigornhm. Using the set theoretic operanons. finding a kev_aa s
sqaightforward. The aigorthm is —
if (Key_cut(source node cut C,) or key_cuttermmal node ax C))

let the mn ({C,[,|Gi) be the key_oa
if (C, and C, are o key_aa) {

for (all cus C,,)

select as a key_oa the min (jkey_an(C)|);

}

The functon key_cut( ) determines a key_ca based on 1ts defim-
non m Secuop 3.3. The tme complexity of the key_cmt( ) func-
non is O([) and, bence, the ome compiexity © find a key_co s
W x n).

A 3c Pah_group Geperanon: When a key_cur exasts, we mend ©
reduce the mumber of states generamd by creatng path_grosgs besed
o the key_iinks. The urne complexity mvolved 15 O(1 x 8) where
8 is the number of failure sumpie paths. It is done as follows —




i i i i =

150 ‘EE

for (i = 10!} {
if (i € key_links) {
for (all CP,(1) in F_set(1)) {
f (i € CP(1))
let CP.(1) be 2 member of group G(i):

}
}
}

A.3d 2-Composite Path Generation: The generaton of
2-composir+ paths direcdy from F_set(1) is sqamightforwarg.
We exhausuvely create the combinatons of two failure states.
This method is easy, but generates many redundant siates. Use
of this method is suggested when the network does not have
a key_cur. Nonetheless, a conservatve techruque w generate
the 2-composite paths trom the park_groups is employed. For
a source or termunal node cut working as a key_cur, each
member of a certain path_group is a umque path. And creaung
2-composite path is also unique. Hence, we do not have o check
for redundant states. On the other hand the members of the
path_groups generated from the key_jink of other than the above
key_cuzs is not unique. In such cases, it happens that generated
2-composite paths comprised from the paths which are the
member of a certain group, and are always a failure state. To
heip reduce the ume computauon, we need to check such cases.
The time complexity of this step is O(82) if key_cua does not
exist.

A.4 k-composite paths generation (k>2): Here, we generate
a kclique from 2 (k—1)-cliques of F_set(k—~1) using set
theoredc XOR operadon. If the resuit is a link in PG(V,E),
they have formed a k-clique. Otherwise the 2 (k— 1 )~cliques
fail to produce a k-clique. If the 2 (k- 1)-cliques create a &-
clique, get the k<clique by taking the umion of those 2 (k—1)-
cliques. Note, we may keep the F_set(2) in lexicographic order
0 speed up the searching process.

= Success/Failure Determinaton (for CP,(k)): Lemma 2 is in-
corporated 0 determune the success/failure of a CP (k). The
algonthm is —

for fall cuts ;) {
if (W(CPC,(j)) < Wou) { /(1) %/
append it 10 F_set(k); /* check for redundancy first */
break:

}
if (CP(k) is oot a failure)
append it 0 S_set; /* check for redundancy first */

}

For the worst case, the method uses all cuts o help determine
a success CP;(k). Thus, the ume compiexity for each state
CP{k} s O(n).

« Cross_link;(k) Generatnon: For each CP,(k), cross_link,(k)
is generated by taking the intersection of cross_iink,(k—1)
and cross_linkp(k—1) of CP,(k—1) and CPg(k~1),

m
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respecuvely. Thus, the ume complexity or 2ach cross_
link; (k) 1s constant.

APPENDIX B

B.1 4 cownuer example for method [10]

Consider figure 2 where the capacity of each link is the
aumber shown 1n parentheses. Nine sunpie paths for the network
are: P =(2.5.8), Py=(3.7.8), A3=(1.4.6.8), P,=(5T),
Ps=(1.2), P¢=(4.58), P;=(3.4), Py=(1.6.7), and
Py=(2,3,6.8). All the paths represent failure swzes for W, =
5. Now, generaze ( g )} = 36 2-composite paths trom the failure
sumple paths. While checking for the successes, one obwins
CP, 4(2) as the only success 2-composite paths. Since P, and Py
have yielded success composite paths, [10] elimunates them from
the simple path list. Seven remawmning simpie paths. 2, P;, P,,
Ps, P;, Py, Py, are then unlized w generate | ;, = 35
3-composite paths. Since Ps and P; are no longer 13 the sunple
path list, method {10] fails ® generate a non-redundant
3-composite path CP,5+(3). Nowe, CP,s+3) s a success
3-composite path (refer © figure 2). Obviously, the method of
{101 does not work in general.

B.2 A counter example for method [13]

For the following counter example, we use the notation
in [13]. Consider figure 2 and is two typical paths:
P,=(2.5.6), and P,=(3,7,8) with parh capectues C, =1 and
C; =2, respectively. Since there is 0o common link in the rwo
paths, we use the modified step 2 of [13] to evaluate the capacity
of the combinaton of paths P, and P,;(C);). Following [13],
we define the vector V=(043 0122 3], and imtialize j=1,
and Cu:o.

forj=1.xy=1;and ¥=[03300123]
for j=2, x,=2,and V=[03100101].
Therefore Cy; = 1 + 2 = 3,

However, the definiton of flow in [18] confirms that when ail
links in paths P, and P; are good. the links are capable of car-
rymg 4 units of flow. Hence, the modified method in [13] is
imperfect too. Note, the proposed method presented in subsec-
don 3.1 gives the correct capacity of 4 umts for Cj;. [t 15
observed that for two or more disjoint paths having at least one
node (other than the source or termunal nodes) common amongst
themseives, {13} is likely to lead w0 an wcrrrect conclusion.
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Experimental Results on Preprocessing of Path/Cut Terms
in Sum of Disjoint Products Technique

Sieteng Soh and Suresh Rai

Department of Electrical & Computer Engineering
Louisiana State University, Baton Rouge, LA 70803

Abstract - In the sum of disjoint products (SDP)
methods of network reliability analysis, the preprocessing
of minimal paths/cuts is necessary 1 help reduce the
number of SDP terms and, hence, the overall computation
tme. Several researchers have proposed 1) cardinality-,
2) lexicographic-, and 3) Hamming distance {18} ordering
methods to preprocess the path terms in the SDP tech-
niques. For cutsets, an ordering based on the node parti-
tion associated with each cut is suggested [3]. Our paper
presents experimental results showing the number of dis-
joint products and computer time involved in generating
SDP terms. To help obtain the results, we have considered
19 benchmark networks conuining paths (cuts) varying
from 4 (4) w 780 (7376). Several SDP techniques are
reviewed and are generalized inw three propositions w
find their inherent merits and demerits. An efficient SDP
technique is, then, utlized to run input files of pathsicuts
preprocessed using 1) through 3) and their combinations.
The experimental evaluaiion has been performed on an
FPS 500 system. Finally, results are analyzed. and it is
shown that the preprocessing based on cardinality or i
combinations with 2) and/or 3) performs beuer.

1. Introduction

Several algorithms deaiing with the terminal relia-
bility evaluation are proposed in the literature. These
methods can be classified as: state enumeration, decompo-
sition technique, inclusion - exclusion, facioring, and sum
of disjoint products. A summary of these techniques,
including their relative merits and demerits, can be found
in {1]."Note, all methods of terminal reliability computa-
uon are known to be NP-hard [2].

The sum of products technique (SPT) utilizes
Boolean concepts  change a path or cut poiynomial ino
an equivalent sum of disjoint products (SDP) expression
and, thus, generates the reliability parameies of a given
network. Algorithms based on this principle start with a
Boolean polynomial formed by either the success terms
(minimai paths) or the failure terms (minimal cuw) for
given network. To help reduce the generated SDP terms,
the paths or cuts are sequenced according lo the cardinal-
ity {5.15], andjor lexicographic ordering following the
symbols of their alphabews [6]. Recently, Wilson {4] has

This work was supported is pan by the Air Force Offos of
Saenufic Research uader grami AFOSR-90-0324.

5D.4.1.

suggested o choose the first term in a group lexicographi-
cally and, then, sort the second and subsequent terms so
that the manber of variables 2 tem has in common with
the preceeding lerm is maximized. Buzacott {3} proposes
an altermative approach 1o order the minimal cuts based on
the node partition associated with each cut. An SPT,
then, converts this preprocessed Boolean polynomial of
paths/cuts into an equivalent SDP form that represents the
disjoint system logic {1-2.5,7-11.13,15-17]. The disjoint
products for any (m-1) size path P;, where m denotes the
number of nodes i the graph model G(V.E), is obtained
directly by intersecting the complements of the remaining
{I{m-1)} links of G{V.E) with P;. This observaton (first
made in (5] and, then, proved in {10]) Ruther reduces the
computation tme for algorithuns based on the Boolemn
concepts. Note, an SDP expression has one o one
comrespordence with the system probability formule A
drawback of the algorithms based on the manipulation of
Boolean sum of products or implicants is in the iterative
spplication of cerain operations and the fact that the
Boolean funcuon changes at every step and may be
clumsy. Moreover, the Boolean fimctdon is simplified
using absorption rules [18] and, thus, requires 1 comsider-
able computational effort (8]. Ther=fore, most SPTs are
applicable only w0 small to moderaie sized networks.
Recently, Soh and Rai (7] have proposed CAREL (Com-
puter Aided RELiabilicy evaluator), a new aigonithm based
on SPT concept, which can evaluate a large nawork (with
780 paths and 7376 cuts) in less than a munute CPU tme
(on Encore MULTIMAX system) with modest memory
requirement.

. All preprocessing techniques reduce the number of
SDP terms, hence, the computation tme of reliability
analysis; however, there is no unified study or experimen-
tal work on their comparative performances. This paper
yrdvigics experimental results to help compare their perfor-
mances. For this, we have used 19 smail w large bench-
mark nerworks with paths (cus) fom 4 (4) w 780 (7376).
We consider 1) cardinality- , 2) lexicographic- . 3) Ham-
ming distance- ordenng methods and their combimations o
preprocess paths/cuts for the benchmark networks. The
CAREL [7] is. then, utlized 1o obtain the SDP terms and

CH2979-3/91/0000-0533 $1.00 ©® 1991 IEEE 0533




computation time for generatng these terms. {In fact, any the network is denoted by a binary 1. A binary 0 stands

exisung Boolean technique may be used o perform the for a don'? care stz (not a DOWN sute). Consmider the .

experiment.] The experimental evaluation is performed on munpaths a b, ¢ 4, a d ¢ and b c ¢ between the (s,1) node

an FPS 500 sysiem. ’ Tt par m Fgure 1. These nunpaths awe siored in the «
The layout of the paper is ls“fc':l!c'w’l/:'Secdo;x a ' memary = following idenafiers : (Lefunost bit is the most '

presents preliminaries. It also discusses bit vector daua signicant bic) .

represcatation technique which has been used to program  -“'~

CAREL [7] and sorting methods utilized in ocessing. ab :1100000000000000

. N 2
SecdonlﬂmnsidasagmextﬁudVie_\vofS?Tsmdcom- :::?%})llq%%%%%%%%%%% B
pares their basic philosophies. An example is solved o 5ce:0110100000000000 .
illustrate their concepts. Section IV discusses preprocess. i
ing methods and provides the experimental results using In this example, we have utilized the word size w as 16 o
19 benchmark networks. Note, the benchmark networks bits. Note, a minpath/ mincut requires [l/wl words of =
are a good representative of small o large graphs because memory. With bit vector representation, the storage
they contain paths (cuts) varying from 4 (4) w 780 (7376). requirement for a minpath (mincut) identifier depends on :_ .
Finally, Section V ouuines a discussion on the experimen- - the wtal qumber of links in the network and not on the <
wl results. X . size of the pathset (cutset). Coding and decoding of path B
- information into bit representasion or identifier and vice B
IL Preliminarics versa may 1dd extra cost as it involves ( bits testing. How-
: ever, this operation (coding and decoding) of minpaths/
2J Background mincuts are one tme operatior. They are ususlly worth
Consider a linear graph G(V.E) model for a net- the exra computation as the generation of disjoint events b
work where V denotes the set of nodes and E represents (and, hence, the reliability) requires considerable manipu- 1"
the set of edges of the network. Note, | VI= m, and {E {= Iaons.  Moreover, the ability of bit representaion m iV
I Assume G(Y.E) is free from seif loops and direced detecting md eliminating redundant temms using  set 2
cycies. Each edge has two sutes : pood (UP) or bad theomm: operations like union, ntersection. subset etc.'is s
(DOWN). Nodes are assumed to be perfect (imperfect an important adv{muge. To illuszrate the concept for +2
nodes can be considered following & method given in (S]) recundancy checking, assume the reference term s X and >3
Let the link failures be statistically independent This . t2st term XY {which is a redundant subset of X). Then 1 .
assumption is useful 0 make the reliability problem do the foilowing: "‘j
mathematically wractable {1). reference (X) 11001 “
A minpath P; is a path from a source node 5 t0 2 st (XY) 11101
terminal node ¢ in G(V.E). Lt is formed by the set of UP 11101 :OR operation BN
edges such thal no nodes are traversed more than once. st XYV (1”1)10(1) -EOR . 5-‘
Pathset is defined as the set of minpaths, A cut is a ) 00 ‘EOR operation #o

disconnecting set All communication between a
prescribed (s,1) node pair is disrupted once the edges in
(s,1) cut fail We define a mincut as a cut which has no
proper subset that is also a cut and cutset as the set of
mincuts. Assume that either pathset or cutset between a
source 5 and terminal ¢ in G(VY.E) is known.

A result ‘00 00 0 shows XY as redundant Similarly, a
duplicate tam is detecled and deleted. Thus, the set
theoretic operations are easy (o implement. Note, the
computation dme is independent of the size of the net-
work. The number of links {, which affects the speed of e
the set operations, increases the computation time by one
unit for every w additionai links.

TIIpin o
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22 Data Represensation

s

The bit vector representation can be used efficiently

Daua swucae is an imporant aspect of designing for lexicographic sorting. Since the aiphabets of our sym-

340

) . 4 4 . L

elficient dgond\nfs (12]. Rosenthal (14] h A ww the bols are mapped into bit representation from most o least feto -
sdvantage and disadvantage of three different kinds of .. i . . , . TR
. R . R significant bit, the lexicographic sorting can be schieved 7

daia represenution. This section describes one of the . . . . S
simply by sorting the integer representation of the P

representations, namely bit vector representation, which

can be used efficiently on some of the Boolean SDP tech- F coLs i asing order. Note, the H ng dis-

i ed
niques {7.10] nd also for lexicographic or Haunming dis. umce (18] bexwem ‘.wo P‘Shs. (cmls) s ddin 1 the
) . . number of bits in which their idendfiers differ. We have
tance [18] ordering discussed later in the text . . . .
also used bit vector representation to implement Harmming
A minpath/mincut in a network with { links is distance ordering.
represented by an identifier having [ bits. An UP link of

PR i

: R TR
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II. Sum of Disjotat Products Technique

34 Boolean Techniques Concept (7}

Boolean techniques of reliability evaluation start
with & sum of products expression for pathsets or cuisels
and convert it into an equivalent sum ol disjoint products
{SDP) expression. In the SDP form, an UP or logical suc-
cess (DOWN or failure) state of a link x is replaced by
link reliability p (wweliability q), and the Boolean sum
(product) by the aritunetic sum (product). In other words,
the SDP expression is interpreted direcdy as an equivalent
probability expression of terminal reliability. If F;
represents a path identifier (an UP staie of a link in a path
P; has 1 in F;, while 2 don't care is represented by 0),
the sum of products expression F is given by :

F = trj F, . 10))
-t

whers a denotes the number of minpaths (mincuts)
berween (s,1) node pair in G(V.E). Note, F;'s in (1) are
preprocessed (ordered) following any methods in {3-6).
Equation (1) is modified either canonically or conserva-
tvely to generate the equivalent SDP  expression,
F{disjoint). The conservative modification is usually pre-
ferred, since it is more efficient compared with canonical
modification, where 2! events are required W delermine
F(disjoint). (! is the oumber of links in the network] A
simple way 10 generaie the mumaily disjoint events m (1)
is as follows:

Fy\+FyFi+FyFiFiv v F FIF . F

where £} denotes DOWN events of path P;. The proba-
bility of UP (operational) for an ith term F; £ Fr .. £y
can be evaluated using conditional probability and stan-
dard Boolean operations as :

-1
Pr(F.-).Pr (F?.F‘-.F,'.TIF,)-Pr(F YT er €Y

Jai

Here, an E; represents ¢ conditionai cube [10] and
_defines conditions for a path identifier F; DOWN given F;
UP (operational). The probability of the first event

Pr (F;) can be determuned in a stnightforward mamner
since the failures are assumed to be staristically indepen-

dent. However, the coefficient Pr (E;) nquuu further ;.
consideradon since various terms within E;'s will, in gen- -
eral, be not disjoint [1]. This necessitates E;’s to be made .
mutually disjoint before we gmmu the equxvdmt ;:obo—

bility expression. T P

-

. Various reswchm m have worked on this philo- .

sophy and have ;mposad methods to generate 2 disjoint

expression for (F;, Fy) pairs in (1), and also the (E,, E)) -

terms within an F;. Following three propositons P 1

5D.4.3.

Tabie 1.
OP, through OF, used with SDP techniques

Operator | Function Ref.
0P, Cutset Dispoint Procedure {10]
0P, 3 operstor i
oP, E-operator {5}
OP, COMPARE( ) funcuon {15}
opP, CMB ( * ) operator (9]
OP, Boolean negaton 17N
0P, Relative compiement, Procedwe | | {13]
OP,, method 1, CMB ( * ) operaior 7
OP, method 2. CMB ( * ) operator {7

through P [ that convert F inta F{disjoint) repr.<zat basic
principles behind most Boolean SDP methods in the liteva-
ture :
Proposition P L The proposition P I defines miermedi.
ate term(s) T;"s us : '

-1

T2 U F/ | s st of 701 )

P
where F'=F, snd F' = F; OP, T;. Hese, F' refers o
the equivalent disjoint praduct term(s) for F;. The opera-
don ‘OFP," is a necessary disjointing operaor. ( Table |
lists various operators). The Fdisjoint) expression is,
then, given by :

F (disjoins) =1 F! )
I

Algorithms {9] and method 1 in (7] make use of proposi-
won P L
Proposition P IL For esch tem F;, 1<iSa, T; is
defined o be the union of all predecessor terms
F\, Fy ..a Fi.), in which any Literal that is present in both
Fi and sy of the predecessor wexms is deleted from those
predecessor lerms, ie. ,

-1

=g_{F, ‘.nn-va/r,.a 4)

-
Consider F! =F,, and define F' = F, OP, T,. Equaton
(3% then, obuins the equivalent F(disjoint) expression
Hariri and Raghavendra {10}, Rai and Aggarwal {5}, Ben-
netts {13), and method 2 in Soh md R.n {7} have based
their techniques on proposidon PIL © ; .
Proposition P I For 1<jsa , mopu:uon OP, ©

pcrfonn: i I e
o an o

Equlnon (5) obtains . set of disjoint cubes ([11] -
comresponding o F;. Note, F!' = F;, and OP, represaus
m sppropriate  dispinang operator. The F(disjoinr)

ﬁ 0535




3

expression is, then, given by equation (3). Abraham (15],
Gmaroy et.al [11], and Tiwani and Verma {17] have pro-
posed their methods using P I cancept.

Example To illustrare propositdons P [ through P III. con- -
sider 2 network shown in Figure 4. For the (s.0) node pair, _
there exists 13 minpaths : adh, beh. bfi, aceh, acfi, adgi,
bedh, begi, bfgh, acegi, acfgh, adefi, and bedgi. In what'
follows, we explain steps w0 generate the exclusive snd
mutually disjoint event(s) or cube(s) for F, (= aceh). This

is demonstrated using typical methods for propositions P I

through P [II. For uniformity, we keep the notation given
in (5). m which an ¥ denotes the down suie of the link x.

P I : Considering CAREL method 1 [7], F! = adh, Fl a
beh ad, and F* = bfi (K + A Z ad). Use equation (2) ©
define T, as (d + b) for F. Replacing OP, wih CMB
operator 7}, we get CMB(T')) as d 5. F* is then obtained
as  F*=a F,CMB (TJ. Forj = 5. ., 13, the tams F/°s,
are generated similarly. An expression for F(disjoint) is :

F(disjoint) = adh + bea(ad) + bfi(k + h& ad)
+acen(d b)Y+ acfi(b K+ bnd &)
+adgi(K [ +Af6 &)+ bedh (@ Z )
voegith Fad)+ bfgh(€Td+27d&E)
+acegith fdb)y+racfgh(bde )
wadefilb £ F R+ bedgi(@ £ [ K.

P 1 : We have used E-operator {5] 1o explain the opera-
tion OP; and, hence, the concepe behind proposition P IL-
The texms F! = adh, F? = beh (X + od), and F? = bfi
(h+h 87 +had &) e computed using {5]. To gen-
erate F*, an intermediate term T is obtained as :
T = adh + beh +bfi | yeesms =d + b + bfi, where
the last term is redundant and can be deleted. Substituting
OP, with Eoperator, E (Ty) is d5. Hence,
= FE (TJ). Similarly, we obtain Fi's for j = §, .,
13. Equation (3) is :

F(disjoint) = adh + beh(F+ad) + bfi(h+h T T+ha d ¥)

F(disjoint) = adh + beh (F+a d) + bfi(F E+dch+ad &
vadervad A)+acend b)+acfildb &
+Wd b e Redh By +adgi(R & &+h b ¢ f+Ab])
cocdh(FT [+ D vbegi@h fvadh [)

e+ DfRMEET T+ E edvad & 1)
s vacegild ER )+ acfgh(d b 71,
pats #ndcft(ggfg)+bcdgt(a efh.

Note, F(dxs)oxm) expression obumed from different propo-
sitions when expanded owt should be identical. For the
network, the terminal relisbility is 0.977184 when each
link is assumed to have a relisbility of 0.9.

12 Existing SDP Techniques - A Comparison [7]

Proposidons P I through P II maintain the min-
paths or mincuts list in memory (equaton (1)) . Consider
1 for UP link and 0 for don’t care, and uslize bit
representation technique [discussed in Section 2.2). The
memory requirement is, then, [I/w] words per path (cut),
where ! is the number of links in the network G(V.E).

f=-1
Proposition P | makes F; disjoint with respect to () F/,

=

Should

. -1
while proposidons P II and P III utilize (U F;.
o
we have similar operations 1o implement equations (2) and
{4), the proposition P I will requi-e more operations than
that needed for P IL Genenily, an F; generates more than
one SDP terms F''s. Hence, the number of terms involved
muF‘ is larger lhmthlxmui", For example, Table

4 OV-E") shows results for i = 780 The numbex of terms
in equation (2) is more than 50.000 ; on the other hand
equation (4) needs exactly (i-1) i.e. 779 terms. Note, in
proposition P L the generated SDP terms have to be kept
in the memory t0 umplement equation (2), which is not the
case for P II or P [II. This makes proposition P [ sequen-
tal. Moreover, P I demands a huge memory space 1o
evaluate & large network. On the other hand P or P I

X I

Ay .

vy

'5."{ ry‘,-{l e

4
e .

R\S YR
Bl P

SERNE e Rrsmrcos on s

+aceh(b )+ acfiEh+bhde)
+adgi(K f+R [ 5 &) + bedh(T 7 [+& &)

has implicit panallelism, making it easier for the program-
mers 10 implement them on parallel systems. Overall, the

1 %)

.. “!¢ o "'.’ .."_‘,

+ begi(k [ a+h fad) + bfgh(Z | d+& dZ &) proposition P 0 or P II provides advantages in com. , .
vacegith [ d b)vacfgh(6dE D) parison with P L ‘ 4. >
+adefi(® & § k) + bedgi(@ & [ K). An analysis of performance comparison between a @

typical example of proposition P II and P II is discussed e

P I : Use reference (15] i obtain the terms F! = adh, in (10]. SYREL [10], an implementation technique for E- e

Fianbeh@+ad)d PP ubfi@+Tehsad X

operator {5], is shown to have betler performance n com- .

parison with $-operator [11). It means proposidon P II ’

outpaforms P [IL Moreover, proposition P I offers 2 g

faster implementation approach than that in P 1 or P III. =y

The bit vector implementation of | F; makes the realiza-
4

+ad ek +ad k). Here, the COMPARE function {15]
substaies OPy. Then,
F*a((/FLOP,F,) 0P Fy)0PyF,).

The inner wrm F, OP, F, gives aceh d, which with F,
generues aceh d 6. Finally, the OP, for the outer term
gives the result as aceh d 6. Similarly, compute F/ for
F; (=5, .. 13). Equaton (3), then, gives :

(A

tion of equation (4) w (word size) times faster than gen- 3
erating equation (2) based on proposition P I. In what fol- z 7
lows, we use CAREL {7} w0 perform our experiment. :

5D.4.4.
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Table 2.
Preprocessing results for paths in Figure 4

MRandom | H L C | CeH | CoL
adh | aah | acegi | bfi | adh | adh
adgi ! bedh | aceh beh beh beh
adeft acfgh | acfgh | adh bf bft
aceh aceh acfi | bfgh adgi | aceh
acegi adefi | adefi | begi acfi acfi
acfgh adgi | adgi | bcdh | begi | adgi
afr bfgh adh ach aceh | bedh
bedh ber | bedgi | aceh | bedk | begi
bedgi | bedgi | bedh | adgi | begh | bfgh

beh acfi begi | bedgi | adefi | acegi
begi acegi ben acfgh | acegi | acegh
bfgh bfi bfgh | acegi | acfgh | adeft
bf begi bfi adef | bedgi | bedgi

C = Cardinality ordering
H = Hamming distance ordering
L = Lexicographic ordering

IV. Preprocessing of Path / Cut terms

Vanous researchers {1] have pointed out the need
for preprocessing (ordering) of paths/cuts to help reduce
the number of generated SDP terms, and hence, the com-
putadon time. References (5.15] sequence the minimal
paths in the order of their increasing cardinality. For each
group of terms of the same size, Locks (6], further, sug-
gests to sort the terms lexicographically following the
order of aiphabeis used w represent the paths/cuts.
Recendy, Wilson [4] has modified the preprocessing (6]
by incorporating distance concept. The distance, here,
means the number of variables a term has in comumon
with a reference term which is chosen within s group lexi-
cographically. Logically, we may call the distance as
Hamming distance (18] if we have binary representation
for two terms in question.

41 Preprocessing Methods

This section presents the concept of various prepro-
cessing methods which are used to order path/cut terms in
an SPT. We, primarnly, utilize the following ordering
spproaches o generate our experimenial results :

1) increasing Hamming diswunce, )

2) lexicographic, o )
3) increasing cardinality {5.15], )

4) increasing cardinality and lexicographic [6], and

$) ncreasing cardinality snd Hamming distance.

Note, approach §) is similar w the one suggested in (4}
except for the fact that we pick the reference term in a

5D.4.5.

group randomly. Reference [4), on the other hand. chooscs
& 1erm based on lexicographic ordezing.

Table 2 presents the minimai paths of the network
shown in Figwre 4, and also the results of preprocessing
the paths based on the methods 1) through 5). Initiaily,
paths generaied for the network we in random order as
shown in column | of Table 2. For the Hamming disance
ordering, we arbirarily pick the first term as the reference.
Then, we sort the paths based on the increasing Hammung
distance from the reference. The terms which have the
same Hamming distance can be in any order among them-
seives. The resuit for this scenario is shown m column 2
of Table 2.

We use alphabets (1,2, _ . ) to denote a patvcut of
s network, where { denotes the number of links in the net-
work. Label each edge with a distinct alphabet. Then
sort the patts lexicographically [12]. The result of dus
type of preprocessing for the paths in Figwe 4 is
presented in column 3 of Tabie 2. The ordering using car-
dinality is mentioned in {5,15]. Note, the terms with the
same cardinality sre ordered in any sequence (refer o
column 4 of Table 2).

Column 5 of Table 2 shows the result of prepro-
cessing the paths of Figuwre 4 using the combinauon of
cardinality- snd Hamming distance- orderings. For this
approach, lerms of the same size are sorted out based on
Hamming distance from the firsk term in the group. Note,
the reference (or the first 12rm) in & group is chosen ran-
domly. It differentistes our method from (4], where the
first term is chosen by lexicographic ordering. Our order-
ing method is computationally simpler than that in {4] and
it does not hinder SPT concept (The preprocessing tme
should be less than 5-10 percent of the overall reliability
computation time.}

Finally, we consider 1o preprocess the paths based
on both the cardinality- and the lexicographic- ordering
[6]. We, first. order the terms in their increasing cardinal-
ity. Then, for the terms within the same cardinality
group, use lexicographic sorting. The result of this
preprocessing is provided in the last column of Tabie 2.

42 Experimerual Results

~ Once we have preprocessed the paths/cuts of a net-
work using approaches 1) through 5) mentioned in subsec-
tion 4.1, we generate the SDP werms (and the terminal reii-
ability for the nerwork) using sn SPT CAREL [7]. Tabic 3
lists the 19 benchmark networks that we have utilized for
our experiments. The table also. illusgales reliability
(urrelisbility) values assuming that gjch network has link
reliability (unreliability) of 09 (0.1).” We denote each of
the benchmarks with nouton Nj, where the subscript j
(superscript i) represents the total number of minpaths
(mincuts) for the network. Note, j (i) vanes from 4 (4) ©
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Table 3. . 2

Benchmark Networks uscd In experiments . - .
No. | Nerwork™ | R(G)~ | QG ) Commes oot
1 NS | 0978480 | 0021520 | Fig. 1 Bridge sawork It v
% R Y] 0968425 | 0.031575 | Fig. 2 6mode. Bdink peawork |~ 7T T T -
A N | 0997632 | 0.00868 | Fit. 3 Swode, $dink newwork - | <= mt— s
e NY 0977184 | 0.022816 | Fig. 4 Modificd ARPANET - |- = - ==~ M
s N3 0.964855 | 0.035145 | Fig. 5 ARPANET in 1971 R .
6 | NN | 0996665 | 0.003336 | Fig. § T-node, 15ink neawork . R
7 | NU® | 0994076 | 0.00592¢ | Fig. 7 l1-node, 21-ink network et
8 NE 0.969112 | 0.030888 | Fig. 8 9-node, 13-link naawork A e
9 N3 | 0975116 | 0.024884 | Fig. 9 Modified ARPANET o N
g

10 NE 0.984068 | 0.015932 | Fig. 10 Fig.9 with different (1) : - .
11 NE® 0.997494 | 0.002506 | Fig. 11 7-node. 12-link network T
12 NE 0.996217 | 0.003783 | Fig. 12 8-node, 13-iink network

13 | NZ° | 0997186 | 0.002814 | Fig. 13 16-node, 30-link network ) =3
14 NB 0.9045T7 | 0.095423 | Fig. 14 ARPANET ’ ' o
s NE 0.974145 | 0.025855 | Fig. 15 reduced fom of Fig.14 h
16 NS 0.997506 | 0.002494 | Fig. 16 10-node, 21-link network -
17 | NP | 0985928 | 0014072 | Fig. 17 ARPANET 1z
18 NES 0.987390 | 0.012610 | Fig. 18 reduced form of Fig. 17 ; !
19 | N45® | 0997120 | 0.002880 | Fig. 19 20-node, 30-link network ;}5 J
£
b |
* N} mesns a network with j paths and i cuts ,"
** Terminal reliability (unreliability) values are for link reliability (unreliability) = 0.9 (0.1) ‘:" v
180 (7376). We generate the reliability values of the net- preprocessing may or may not reduce the number of dis- :’;
work from the pathsets, and the unreliabilicy results from joint paths/cuts terms and also the CPU tme compared w 373
the cutsets. As expected the sum of the reliability and the ones involved for the randomly ordered path/cut terms. -
unreliability values for a network is 1. The basic idea in having » Hamming disuance- or a e
Table ¢ presents the experimental results by run- lexicographic- ordering is o ke advantage of overlap- o=
ning CAREL [7] with random and preprocessed lists of ping link variables in the paths. But for large networks, o
pathsets for the benchmark networks. The wble provides since there Are £0 many permutanons °f variabies involved B
the results in terms of total number of disjoint paths and in the ordering of the paths/cuts, it is likely that the Ham- R
the computer time involved in gencraing SDP terms. ming distance- and lexicogrsphic- orderings take advan- ,‘
Note, the computer time is in CPU seconds, and the ‘0’ tage of the overlap only on the early stages of the compu- o
second represents a time less than 0.1 sccond. These tation. For the larger part of the evaluation, we may or {ﬁ .
" * . . s
results are generated using an FPS 500 system. may not have a better overlapping vsriables compared :f;
. . .. . the random order of paths/cuts. This reasoning expiains e
Table 5.1: obtained similarly. It shows the experi- our results (refer 1o Tables 4 and ). ol
mental evaluations for random and preprocessed lists of o ) e
cutsets. To help evaluate the efficiency of a preprocessing  Onthe other hand, cardinality-based preprocessing e
technique, we have used the number of disjoint cuts and (e""“.“‘d‘"‘hw ordering °f‘1¥ ot “t“ °°"“b“f‘°°"‘ with \{,
computer time consumed io generate them for esch bench- Hamming distsnce- or lexicographic- ordering) shows 77
mark network. significant improvements over the other lechniques, For o
larger networks, it is shown in Tables 4 and § that both -
V. Discussion the number of disjoint paths/ cuts and the CPU tme Y
L required 0 compute them are dramatically reduced. The -l
. T'bk"' 4 md 5 su_ggs;otha! H m:‘ duunc: '?‘d results prove the importance of cardinality-based prepro- ",—.—
le:x:;?ng:xc erk nu:xbgi; ( :::l] :::2: B«: uc:JmP u!(l,); cessing (w help reduce the time complexity of SPT for 3‘)
° nel y ¥E network reliability problem). Note for path-based SPT, the ‘5’ ="

SD.4.6.
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cardinality-based preprocessings may also take funher
advanuge of the fact that the disjoint term fer a path 7
having (m-I) links is generated simply by intersecting the
complements of the remaining {I{m-1}} links of the net-
work with P; {5.10). This fact significanily reduces the
CPU time of reliability evaluaton for large networks. But
the method does not apply for non-cardinality based
preprocessing techniques. Morcover, this observation is
hardly appiicable for any preprocessing method used on
cut terms. -

While comparing the cardinaliry-based techniques,
we notice in Tables 4 and 5 that the number of disjoint
paths/cuts and the CPU times required from inpuning the
preprocessed paths/cuts o CAREL [7] are of the same
order. Adding Hamming distance- or lexicographic- ord-
erings may or may not reduce the disjoint paths/cuts gen-
erated nor the CPU dme consumed © gencrate them. For
large networks, the results can be easily explained from
the fact that neither lexicographic- nor Hamming distance-
orderings give any benefits over random ordering (as
expisined earlier). Note in large networks, in general,
there are a lot of terms which are of the same cardinality.
Thus, ordering the terms in each group based on lexico-
graphic or Hamming distance does not provide significant
advaniage over random ordering of the terms of the same
size.

The paper has presenied the experimental results
for the performance comparison of five dilfarent prepro-
cessing approaches of pathsfcuts. For path, we may
definitely conclude that the cardinality-based preprocessing
(cardinality only or irs combinations with lexicographic-
and/or Hamming distance- orderings) is worth considering
with SPTs as it reduces the computer time. For cut-based
SPTs, we could not get the resuits for the preprocessing
method proposed in [3]. We conjecture the method [3] is
quite involved and its time complexity © preprocess the
cuts is magnitudes higher than the ones we have con-
sidered in this paper. Considering this fact in view, we

derive the cardinality-based ordcring schemes to be s best .

bet even for cuts too.
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1. Introduction

To achieve the faster computing speeds imperative for many computer applications, the use
of multiple processors operating in parallel is a necessity. Consequently, the reliability of the
network interconnecting these processors is of notable importance. For general networks, or.z
may define several reliability measures. Terminal reliability is the probability that a working path
exists from one specified node to another specified node; K-terminal reliability is the probability
that a working path exists from one specified node 1o each of a specified set K of nodes: broadcast
reliability is a special case of K-terminal reliability in which K is the set of all output nodes. For
general networks, the problems of terminal, broadcast, and K-terminal reliability evalaations are
computatonally intractable, specifically, #P-complete. For some particular networks, though, the
network offers sufticient structure to allow efficient evaluation of reliability.

Multistage interconnection networks (MINs) are a widely studied means of interconnecting
Processors 10 memory or processors to processors by stages of switches. Experimental systems
also increasingly use MINs. Such large scale projects as IBM’s RP3, the University of Illinois’
Cedar, Purdue University’s PASM, and PUMPS possess MINs as an integral part of their design.
A MIN consists of N inputs and N outputs and (typically) n stages of switching elements (SEs),
where n = log,N. The most common type of MIN uses as SEs 2x2 crossbar switches, which are
able to produce either a straight (T-mode) or exchange (X-mode) connection.

Because of appealing properties such as node and edge symmetry, logarithmic diameter,
high fault resistance, scalability, and the ability to host popular interconnection networks, such as
ring, torus, tree, and linear array, hypercube multiprocessors have been the focus of many
researchers over the past few years. This topology has resulted in several experimental and
commercial products, typical examples being the Intel iPSC, NCUBE/10, Caltech/JPL, and the
Connection Machine. Conceptually, the hypercube interconnection network is a multidimensional
binary cube with a processor at each of its vertices. An n-dimensional hypercube comprises 2"

-1 . .
processors and n2""' links. Each processor has its own local memory, and processors




communicate by explicit message passing either directly or through some intermediate processors.
A subcube is a substructure of a hypercube that preserves the propenies of the hypercube.

In the work supported by Air Force Office of Scientific Research grant AFOSR-91-0025,
we have examined reliability evaluation problems for MINs and hypercubes. The main aims of the
work have been twofold—first, to obtain efficient reliability evaluation algorithms for MINs and
hypercubes, and second, to incorporate dependent and multimode failures into these algorithms.
The method underlying our research has been 1o employ a structural approach for studying the
reliability of multiprocessing systems based on multistage interconnection networks and
hypercubes. We sciccted this approach for two reasons. First, the regular structure of the
topologies studied allows efficient solutions to certain difficult reliability measures. Second, the
approach yields a framework in which incorporating dependent and multimode failures is
straightforward. For our work this second year of the project, we concentrated on new
computational procedures for calculating reliability measures (exactly and approximately) in MIN
and hypercube based multiprocessing architectures. Sections 2 and 3 provide the results. A
bibliography at the end of this report compiles our research papers on the topic. Appendix A
summarizes results obtained in the first year (October 1, 1990 to September 30, 1991). We believe
that our efforts will help the AFOSR in the areas of analysis, modelling and simulation of these
multiprocessor systems connectivity, survivability and availability (with or without multimode
component and dependent failure models).

In addition to the efforts of the P.I., S. Rai, and co-P.l., J. Trahan, the work was
supported by a doctoral student, S. T. Soh, and five M.S. students: S. Ananthakrishnan, V.

Narayan, T. Smailus, N. Venkataramani, and D. Wang.
2. Multistage Interconnection Networks

2.1. RESULTS - AN OVERVIEW
Our aims in studying MINs were to develop efficient algorithms for the evaluation of

terminal reliability (TR), broadcast reliability (BR), and K-terminal reliability (KR) of MINs.




These algorithms were to incorpora’ . dependent and multimode failures. In the first year of the
project, we developed algorithms for TR, BR, and KR of the shuffle-exchange network with an
extra stage (SENE) {2, 9]. These algorithms were efficient, each running within O(log N) time for
an NxN SENE. They assumed two-mode and independent failures, however. This work was an
essential first step in the development of more general algorithms, as the simplifying assumptions
of two-mode and independent failures allowed us to concentrate on exploiting the structural
properties of the MIN to develop reliability evaluaton algorithms. We expected, and later results
have borne out the expectation, that these structure-based algonithms would provide the basis for
algorithms under more realistic assumptions. Later in the first year, we extended these algorithms
to incorporate multimode switch failures [18]. The new algorithms ran to within a constant factor
of the time of the algorithms assuming two-mode failures, with the exception of the TR algorithm,
which ran in O(log N) time as opposed to O(loglog N) time.

In thz second year of the project, we enhanced the algorithms to incorporate dependent
failures [3, 6, 16]. We also examined the SENE and the merged delta network (MDN) under
conditions that allowed link failures [10, 17]. In what follows, we discuss the results in brief; the

details can be obtained from the enclosed papers.

2.2. MULTIMODE AND DEPENDENT FAILURES

Assumptions of two-mode and independent failures are common in reliability evaluation,
since they simplify the computation and since the evaluation problems remain intractable for
general networks even under these assumptions. These assumptions, however, fail to adequately
model real-world situations. For example, researchers have described instances of dependent
failures, or fault side-effects, in the PASM. Moreover, the assumption of independent failures
leads to an overestimate of reliability. The two-mode model leads to an underestimate of reliability
because it does not allow a degraded operational mode of SEs. Note, some work exists on
incorporating multimode components or dependent failures into reliability analysis for

telecommunication networks. though little for specific multiprocessor networks.



We developed efficient algorithms for TR, BR, and KR evaluation of an SENE composed
of identical SEs, allowing multimode and dependent failures. The SENE that we examined
contains 2x2 SEs. In the two-mode case, an SE is either completely working or completely failed.
In the multimode case, the algorithms assume a 4-mode model of an SE: a fully operational mode,
a completely failed mode, and two degraded operational modes, namely, stuck-at T mode and
stuck-at X mode. There exist 16 possible degraded modes for a 2x2 crossbar SE. One can readily
extend our approaches to incorporate any more or all of the 16 modes. We model stuck-at faults (0
or 1) and bridging faults between two adjacent links in terms of switch failures. To incorporate
multimode failures, thereby extending the earlier reliability evaluation algorithms [2, 9] to more
realistic assumptions, we modified the shock model of dependent failures, which is considered in
the literature for general networks. For an NxN SENE, the algorithms run in time O(log N),
O(log N), and O(k log N), respectively, where k = |K].

The shock model assumes that statistically independent shocks, which occur with known
probability, cause the failure of network components. When a shock occurs, it causes the failure
of a specific component or set of components. We say that the shock affects the component or set
of components. A shock affecting a single component is called an internal shock (1S), while a
shock affecting multiple components is called an external shock (ES). The main motivation for the
shock model is that there exist events that may cause one or more components (links or nodes) in a
network to fail simultaneously. Explicitly, for example, some components may share important
equipment in common such as a power supply, or several components may reside in a common
chip. Components will fail simultaneously if power fails or the chip burns. Test-maintenance-
operation errors, design defects, and elecqromagnetic interference may also lead to simultaneous
failures of components. Some shocks may not induce failures of components but may degrade
them so that their joint probability of simultaneous failure increases.

The shock model was defined for two-mode components. By expanding the notion of an
IS, we generalize its application to an SENE in which SEs may operate in degraded modes.

Instead of associating a single IS with a single component, we associated one IS with each failed




or degraded working mode of a component. We model a shock that causes a stuck-at fault in a
control line by a shock that affects the SE to be stuck-at T or X mode.

For external shocks, we restrict our analysis to two modes only, so the occurrence of an
ES causes all affected SEs to fail. SEs that are far apart are unlikely to be affected by = single ES;
SEs that are adjacent, however, are likely to be affected by one shock. In general, the classes of
ESs that we define are motivated by the failure of one SE causing the failure of other SEs due to
the links connecting them. For shared-memory computers, each processor reads from or writes to
the shared-memory through a MIN, so communication flows in both directions. When the
forward (reverse) part of an SE is failed, this SE may send erroneous routing and control
information to either or both SEs in the next (previous) stage that are connected to it and may cause
one or both to fail. Hence, we assume that an external shock causes a failure in adjacent SEs either
in the forward direction (toward the network outputs) or in the reverse direction (toward the
network inputs). In a practical design, a failure of an output (input) controller can create a forward
(reverse) external shock. Researchers have described such dependent failures in the PASM.

To help compute the reliabilities, we define four classes of shocks. Each class of shock
will affect a certain structured set of SEs. A Class 1 shock will affect an SE to be completely
failed, stuck-at T mode, or stuck-at X mode. A Class 2 shock will affect an SE and one SE to
which it is connected in the previous or next stage to be failed. A Class 3out shock will affect an
SE and the two SEs in the next stage to which it is connected by its output links to be failed. A
Class 3in shock will affect an SE and the two SEs in the previous stage to which it is connected by
its input links to be failed. We define such shocks for every SE. Because the structures affected
by the same class of shocks are the same and all SEs are identical, the probabilities that the same
class of shock occurs are identical for all such shocks. The purpose of our work is, then, to find
the relationship betweer the probabilities of each class of shock and the reliability of the whole
network.

In earlier work [2, 9], we noted that SENE paths form a simple series-parallel graph for TR

and a pair of intersecting binary trees for BR and KR. To incorporate dependent and multimode




failures, we again followed this concept, but also were required 1o include a careful and de1ailed
accounting of the shocks that may affect the SEs on the paths. Note that a single shock may affect
one, two, or three SEs on the relevant paths.

As an example, consider the computation of K-terminal reliability in an NxN SENE. We

outline it simply as follows. Let £ be a Boolean vanable such that E = 1 if and only if working

paths exist to all outputs in set K from input 5. Then P(E) is the K-terminal reliability. Let If, 1,
lx, and /_ denote the events that SE / is failed, stuck-at T, stuck-at X, and working, respectively.

Using the theorem of total probability and noting that P(E |/ f) =0, we have

KR(K,N,s) = P(E\I,)P(I,)+ P(E\L,)P(1,)+ P(E\l,,)P(l,). M

Equaton (1) helps us obtain the K-terminal reliability by computing each term using the following

steps.
Step 1. Determine individual probabilities P(/ 1)’ P([.:)‘ and P(lw).

Step 2. Compute conditional probability terms P(E | 1), P(E | lx), and P(E|] ).

Step 3. Obtain KR(K,N,s) using the results of Steps 1 and 2.

Steps 1 and 3 of this procedure are straightforward. Step 2 requires a careful case analysis
dependent on the degraded working modes of the SEs and on the composition of the set K. For
K-terminal reliability, we describe each SE on a path from a specified input s to an output in X as
marked.

For an input s and a set K of outputs in an NxN SENE, where & = |K], the equation below
computes the K-terminal reliability in O(k log N) time. Let Pf Py Px» P2 P30 a0nd P3; denote the
probabilities of a Class 1 shock that causes failure of an SE, a Class 1 shock that causes an SE to
be stuck-at T, a Class 1 shock that causes an SE to be stuck-at X, a Class 2 shock, a Class 3out

shock, and a Class 3in shock. Letp,, = 1-(p;+ py + P, 42 = 1-P2. q35= 1-p3,, and g3, = 1-

Pij-

KR(K.N,5)=[(p, + P, = 2P.Ds,45,)KR (KN, 5) + p.a5,KR,(K N .9)]a34,.45




Recurrence expressions compute values for KR (K,N,s) and KR,(K,N,s) according to the
different cases enumerated below. Computing the base case for N = 4 requires consideration of
several different cases. For the sake of brevity, we do not enumerate the results for the base case.
Case I: Oniy one child of considered SEs is marked.

1. If the T mode in these SEs allows working paths from input s to the & outputs, then

KRi(K,N,5) and KR(K ,N,s) can be computed by

. N
KR\(K.N,5) = (P, + pu)ad (@309 )21<R1(K,3,s)

N - N
KRy (K,N,s) = [(p, + pw)szz(K,—z—,s)+ 2(p, + Py )X px + prta 1pW - I)KR,(K,E-,s)}

4
- 45(q3043)

2. If the X mode in these SEs allows working paths from input s to the & outputs, then
KR(K,N,s) and KRy(K,N,s) can be computed by the equations above, exchanging p, and
Px-

Case II: Both children of considered SEs are marked. Let K; and K, be the subsets of X that lie in

the left and right subgraphs, respectively.
KR (K ,N,s) can be computed by

N N
KR(K.N.9) = KR K1 55 KR (K, B ) pudasodd

KRy(K,N,s) can be computed by
1. If input s can access the right (left) subgraph when the considered SEs are set in T (X) mode,
then




2 - N
KR, (K,N,s5) = [p;q%zKRz(K{,g,S)KRz(K,,E-,y)
- N N
+2p,pwq3(,'KR,(K,.?s)l(kz(x,,?s)
- N N
+ 2pxpwq3gKR2(K1,—2—,sJKRl(K,,E,s)

+2(pw(pf valp, ~ g3l + p,px)KR,(K,,—Z—,S)KR,(K,,-/;—,S):'
4343435
2. If input 5 can access the left (right) subgraph when the considered SEs are set in T (X) mode,

then KR can be computed by the equation above, exchanging p, and p,.

In summary, we used the shock model to develop efficient algorithms for terminal,
broadcast, and K-terminal reliability evaluation of an SENE with both dependent and multimode
failures. All previous work in this area assumed that failures of SEs in MINs are independent and
that each component has only two possible modes. In the real world, however, these assumptions
are not often true. Our algorithms for broadcast and K-terminal reliability evaluation run within a
constant factor of time of the algorithms that we developed {2, 9] for the same problems under
assumptions of independent and two-mode failures. Our algorithm for terminal reliability runs in
O(log N) time as opposed to O(loglog N) time for the earlier TR algorithm that assumed
independent and two-mode failures. Though we developed the algorithms for the SENE MIN, the
principles underlying the incorporation of dependent failures into reliability evaluation algorithms
readily generalize to apply to reliability evaluation algorithms for any other regularly structured
MIN, such as those reported in the literature for the generalized INDRA network, merged delta
network, and augmented C network. Similarly, though we developed the algorithms for an SE
model that includes only 4 of the 16 possible modes of operation, degraded operation, and failure,
the underlying principles readily generalize to incorporate more or all of the possible modes by

simply including the appropriate cases. Finally, though we developed the algorithms for a




particular set of dependences between failures of SEs, one can use the shock model in the same

fashion to incorporate other dependences between failures.

2.3. LINK FAILURES

Most studies carried out to evaluate the reliability measures of a MIN have assumed that
only nodes are susceptible to failure or accounted for tlie failure of links by considering a link as
part of the adjacent switching element. Neither approach accurately accounts for link failures, even
though the failure of even a single link disconnects several input/output paths, leading to a 'ack of
fault tolerance and low reliability. We have designed simple and efficient algorithms for the TR
and BR evaluation of the SENE and the merged delta network (MDN) under the assumption that
both nodes and links can fail {10, 17]. We assumed two-mode and independent failures. This
extension to consider link failures is in line with our other work on incorporating more realistic
assumptions into the reliability evaluation of the regularly structured networks in MINs and
hypercubes.

For the SENE, the TR and BR evaluation algorithms run in O(loglog N) and O(log N) time
respectively. For the MDN, the algorithms each run in O(log N) time. These times are within a
constant factor of the times required for evaluation of the corresponding expressions that we
developed [2, 9] for the SENE and the ones reported for the MDN, though these earlier
expressions assumed that only SEs may fail and links are always working. Hence we can
conclude that incorporating both node and link failures into the reliability analysis for the SENE

and MDN does not add any extra overhead to the computation time.

3. Hypercubes

3.1. RESULTS - AN OVERVIEW
In the first year of the project, we explored the hypercube reliability problem with
deterministic and probabilistic models. A deterministic model assumes a given set of failures in a

cube. Specifically, the problem was to determine the size and location of the maximal dimension
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available (fault-free) subcube. We denote this as the reconfiguration problem. We developed a set
of algorithms, each based on a different representation of a hypercube, to solve the reconfiguration
problem. Additionally, we extended the concepts developed in the reconfiguration algorithms to
address the problem of dynamic allocation of subcubes of a hypercube to multiple tasks.

Probabilistic fault tolerance measures for hypercube multiproc: ors are useful for packet-
switching applications because they verify the sturdiness of the topology and depict the probability
of successful flooding (for route set up or packet ransmission). To study the probabilistic model,
we looked into terminal and network reliability evaluations using CAREL, a tool used to compute
general network survivability measures. (The Year 1 report in Appendix A describes CAREL.)
Because of the exponentially large number of paths (spanning trees) involved as a starting step for
solving the terminal (network) reliability problem, even the efficient general algorithms in CAREL
failed to generate results for hypercubes of dimension n 2 4 in reasonable time {13].

In the second year of the project, we continued our efforts to discover efficient approaches
to solve reliability problems in a hypercube architecture. For the deterministic model, we solved the
following specific problems:
(a) In a multiuser-multitasking environment, subcube allocaiion plays an important role. We
obtained an efficient distributed algorithm for largest operational subcube identification.
(b) The K-Connected Functionality (KCF) problem applies to large scale degradable hypercubes
used to run concurrent algorithms that are not sensitive to changes in the system topology. We
established a bound on the number of faulty nodes that an n-dimensional hypercube, C,, can
tolerate such that at least K processors remain connected, provided there are no Cg or C;
disconnections.
(c) We constructed a fault tolerant broadcasting algorithm useful for distributed agreement and
clock synchronization.
Section 3.2 discusses this work in greater detail.

In addition to broadening our exploration towards deterministic models, we developed

methods in the probabilistic model for approximating network and terminal reliabilities using lower
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and upper bounds, between which the exact measure is guaranteed to exist. Section 3.3 describes

this work.

3.2. DETERMINISTIC MODEL

In the first year of the project, we obtained a centralized algorithm for reconfiguration of a
hypercube after faults [5]. In the second year of the project, we improved on this algorithm [1].

A related and equally important issue is that of largest operational subcube (LOS)
identification. This year, we proposed a distributed LOS algorithm (13]. A distributed algorithm
allows each PE v to run a program to obtain a subcube with maximum size k& that contains v. Qur
method uses the CMB operator of CAREL which includes the multiple variable inversion concept.
The computational complexity of the CMB operator is data dependent. Hence, we consider the
best and worst cases of the LOS approach. We proved that LOS takes O(m?) steps for the best
case while O(m?) for the worst case, where m < n denotes the number of faulty nodes in a
hypercube C,. A heuristic, based on a modification of the LOS approach, however, generates
correct results in time O(m3) for 99% of the problem instances tested. In case the number of non-
available nodes (faulty or busy) increases, an alternative distributed approach processes w available
nodes in O(wn) time to solve the LOS problem [13].

The KCF model uses the concept of forbidden faults and considers as forbidden fault sets
that cause disconnection of a working 0-subcube, Cy. Researchers have shown that a C, can
tolerate up to 2n—3 faulty nodes and remain connected provided that the failures do not disconnect
any C subcube. Our work further generalizes the KCF connectedness measure by extending the
forbidden set to include C; disconnections. We established that a C, can tolerate up to min{3n-5,
4n-91} faulty nodes and remain connected if disconnections of C; or its subsets do not occur. This
assumption is not impractical as researchers have studied the probabilities of C; disconnection and
have shown that for C; it is very low.

We adopted a hybrid approach to fault-tolerant broadcasting that uses the concepts of

redundant and non-redundant methods. It, thus, avoids faulty PEs in the communication paths to




12

-~

improve the capability of an existing redundant type algorithm. Here, each PE sends the message
only to its healthy neighbors. Furthermore, the algorithm modifies the message reception
mechanism to recognize only the first arriving copy of the message and to ignore later redundant

copies [13].

3.3. PROBABILISTIC MODEL
Our work on the probabilistic model concentrated mainly towards generating lower bounds

for network and terminal reliabilities. A lower bound on rehability is quite appealing because it can
be obtained with substantially less computation than an exact bound, and the system will be at least
as reliable as the bound. Towards obtaining bounds on network reliability, we first solved Spemer
bounds and Kruskal-Katona bounds for hypercubes. These solutions, however, required
unreasonable computation time for cubes of dimension greater than 3. We next attempted exact
reliability evaluation using spanning trees and CAREL. An n-cube is a matroid and CAREL solves
reliability problems in time polynomial in the number of spanning trees, ST(C,). Unfortunately,
ST(C,) is exponential with respect to n. Thus, this technique is not advisable for large n. As an
alternative to these solution approaches, we derived a tighter lower bound on NR using structural
properties of the hypercube [4, 8, 13]. The NR bounding algorithm uses the structure of a C, to
recursively generate a lower bound from the knowledge of the lower bound for a C,-;. One can
partition a C, into two C,,_’s. We define an exterior link as a link between these two C,,_;'s. The
algorithm divides the problem into three mutually disjoint cases such that events in each case are
also mutually disjoint among themselves. Thus, the lower bound on NR s the sum of the lower
bounds on NR obtained from the following three cases.

Case 1. Both (n—1)-cubes and only one exterior link operate.

Case 2. All 2™ exterior links operate.

Case 3. For2<i< 2"'1-1, i exterior links and one (n—1) cube operate.
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Case 3 is further subdivided for i = 2" 'landi=2""-210 help solve large C,l problems

efficiently. Note, the contribution to NR from the Case 3 terms where 2 < < 27 3s very small
and so is computed by one expression for all such terms.

The terminal reliability bounding algorithm for a source s and terminal ¢ at distance n from
each other considers only shortest paths from s to ¢ [4, 8, 13]. (If we consider only shortest paths,
then, without loss of generality, we may consider these as nodes 0 and 2"-1 in a C,.) Of the n!
(s,?) paths, n of these are node and link disjoint. We efficiently computed a lower bound on TR
from a specific set of o-n paths, where o represents a multiplier. A routing algorithm determines
the parameter . We show that:

@ a=[(n/2)-11if the followin g propert.es are satisfied.

Property N1: Paths P;; and P;; are node and link disjoint, for j # /.

Property N2: Paths P;; and P, ; have (i+1) common nodes and links for i < k.

Property N3: Paths P;; and P, are node and link disjoint for j # /.
(b) o =(n-2)if the following properties are satisfied.

Pruperty L1: Paths P;; and P; are link disjoint for j # /.

Property L2: Paths P;; and Py have (i+1) common links, for i < k.

Property L3: Paths P;; and P are link disjoint, for j # /.

In(a)and (b),let 1 <i,k<aand 1<j,!<n. The algorithm exploits properties N1 through
N3 and L1 through L3 to generate TR bounds for node, link, and node and link failure cases. We
proved that our TR bound is tighter than previously established bounds based on disjoint shortest
paths. To improve the bounds, we have also constructed a 2-cube model for bounding TR of a
C,. A combination of the Boolean and 2-cube approaches leads to a still tighter bound on TR.

Note that the fault model above allows both node and link failures. The inclusion of link
failures implicitly considers multimode failures of processors as follows. A processor connects to
a link through an I/O port and associated control circuitry. For example, the functional block of a
node in the Intel iPSC architecture comprises 64K bytes EPROM, 512K bytes DRAM, an Intel

80286 processor, and an Intel Ethernet Controller 82586 for I/O. The failure of a port or its
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controller 1s actually a partial failure of a processor, resulting in a degraded operational mode for

the processor. We model this multimode failure of a processor as a two-mode failure of a link.

4. General Results

In addition, we computed the node and link failure probabilities in a typical hypercube
system [13]. To illustrate this, assume an Intel iPSC architecture. Based on the functional block
described above for its node. we utilized MIL-HDBK-217F to determine rele ant parameters for
the chips and computed mean-time-to-failure rates. A link, in this case, includes an IO unit at a
node, physical communication media, and the /O unit of the adjacent node. We have also
expanded our effort towards the understanding of an object-oriented approach to evaluate faul:
trees with dynamic and non-dynamic gates. HARP, a typical fault tree solver, uses these gate
types to model the behavior of a fault tolerant hypercube. We used an object-oriented approach to
solve fault trees directly [12,15]. This effort is different from the one given in HARP where an
indirect approach is utilized and the fault tree is inherently translated into a Markov model. All
these efforts are helpful in understanding different aspects of the hypercube reliability evaluation

problem.

5. Future Work

Regarding MINSs, the most significant open problem related to our work is to obtain
efficient algorithms for evaluating the Network Reliability (NR) of MINs. We expect that efficient
algonthms exist because of the regular structure of MINs and because of results on other reliability
problems. Following the principles we have established, an efficient algonthm for NR under
assumptions of independent failures and two modc components should be able to be readily
generalized to an algorithm under assumgtions of dependent fail'res and multimode components.

Regarding hypercubes, the most significant open problem reiated to our work is to obtain

reliabinty evaluation algorithms that incorporate dependence between failures. As for MINs, we




believe that the shock mode! can provide a basis for incorporating dependent failures into reliability

evaluadon algorithms.
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ABSTRACT

The hypercube architecture is a popular topology for many parallel processing
spplicauons. For conunued opcrauon of the hypercube muluprocessors after the falure of one
or more i-subcubes and/or links, fault tolerance by reconfigurauon is an imponani problem.
Thus paper considers the reconfigurauon 1ssuc and presents an algedraic lechmique 1o analyze the
problem, eatending the concepts 1 {9]. The technique uses algebruc operatory w0 idenufy the
maximum dimensional fauit-free subcube, and thus helps in achieving graceful degradauon of
the system. We analyze the complemty of our algonthm and show that it s efficient as
compared to previous algorithms {1, 8, 14].

Keywords: hypercube reconfiguration, subcube recognition, fault-free subcubes.

1. Introduction

The suitability of a multiprocessing architecture is largely affected by its ability to
tolerate faults. After identification of faulty elements, reconfiguration of the
multiprocessor and the distributed algorithm running on the multiprocessor allows
graceful degradation. Reconfiguration ensures continued operation of a hypercube
multiprocessor after the failure of one or more subcubes (a subcube is a subgraph of a
hypercube that preserves the properties of the hypercube) and/or links. Algorithms exist
for diagnosing faulty processors and links in hypercubes {2, 3). Fortunately, most
paraliel algorithms can be formulated with the dimension a of the hypercube being a
parameter of the algorithm [1]. Hence, the reconfiguration probiem in a hypercube
multiprocessor reduces to identifying the maximum dimensional fault-free subcube(s).

Becker and Simon (1} provided a procedure that usually, but not always, finds the
maximum dimension “d™ of a fault-free subcube. Ozgiiner and Aykanat (8] utilized the
principle of inclusion-exclusion in algorithms that always find d and also the number of
fault-free d-subcubes or the complete st of fault-free d-subcubes. Kim et al. (5] presented
a top-down processor allocation strategy that also applies to the reconfiguration probiem.
Sridhar and Raghavendra [14] gave an algorithm for reconfiguration based on assigning
weights 10 nodes and identifying subcubes based on their maximum and minimum weight
nodes. Latifi [6] gave a distributed algorithm that follows a greedy heuristic for
identifying the largest fault-free subcube in a faulty hypercube. Most of these techniques
treat a link as a 1-subcube, When the end nodes of a link are not faulty, treating a link as
equivalent to a 1-subcube is erroneous.

This paper introduces a new algebraic technique that returns a list of fault-free
subcubes for the purpose of reconfiguration after faults in a hypercube. Our technique has

This work was supporied in part by the Air Force Office of Scienufic Research under grant AFOSR-91-
002s.




the advanwyes of simplicity and improved time complexity over previous exact methods.
We present four operators, namely # (sharp), S (dollar), D, and p!{ 10 help descnbe our
method. The proposed technique is formulated to run on a single processor which would
typically be the host or the resource manager in 2 commercial hypercube system.

The layout of the paper is as follows. Section 2 discusses the hypercube and its
properties and prescnts a fault model that allows subcube and link failures. The algebraic
operators are given in Sccuon 3. Sccton 4 describes the algorithms and illustrates the
technique with examples. The complexity issues presented in Section 5 show that our
method is more efficient than previous approaches.

2. Hypercube Concepts and Fault Models

An n-dimensional hypercube is defined as Q, = Ky x Q,,;, where K is the complete
graph with two nodes, Qq is a trivial graph with one node and x is the product operation
on two graphs [4]. Let Q, be modeled as a graph G(V, E) with V1= 2" and IE1= n 2.
The graph G(V, E) is both node and link symmetric. Each node in Gv F) represents a
processor and each edge represents a link between a pair of processors. Assign binary
numbers from 0 to (2"-1) o0 nodes such that addresses of any two adjacent nodes differ in
only one bit position. The reader is suggested to refer to [4, 11] for other interesting
properties of a hypercube graph.

Using an n-tuple, a processor in Q,, is denoted by b, 1...b;...bg, where b; € (0, 1}.
Two adjacent nodes which differ in the ith bit are said to0 be in direction i (0 S i< n-1)
with respect 10 each other. A subcube in a hypercube Q,, is a subset of a hypercube that
preserves the properties of a hypercube. It is represented by an n-tuple {0,1.x}”.
Coordinate values “0” and “1" can be referred to as fixed or bound coordinates and “x™ as
free. An i-dimensional cube (or i-subcube, Q;) in Q, has (n-i) bound coordinates and {
free coordinates. Note that we will use the terms node and 0-subcube interchangeably
throughout the paper since they denote the same object. We describe a link with an »-
tuple {0,1,q)" containing exactly one q. The position of the coordinate q in one of the n

coordinate positions indicates the adjacenicy direction for the end nodes. For example,
100q denotes the link with end nodes 1000 and 1001 in Q4. Note that both x and q

cannot be present in the n-tuple representation of a Q. This notation differentates a link
from a l-subcube. We refer to the node, subcube, and link notation described above as
ternary vector (TV) notation. .

When an i-subcube is faulty, we assume that all 2' nodes forming the i-subcube
along with their interconnecting links are unavailable. Node failure is a special case of an
i-subcube fault, where i = 0. We assume that a node failure removes the node and all
incident links from the graph. A link failure has the effect of deleting the particular link
from G(V, E).

Note that a link and/or node may be faulty due to a hardware failure. When some
task is currently being executed on an i-subcube, the said i-subcube is temporanly
unavailable and may also be considered as faulty from the viewpoint of reconfiguring the
multiprocessor to run an additional task.




3. Algebraic Operators

This section defines the algebraic operators, #, S, D, and p/, that we will use to find
maximum dimenston non-faulty subcubes in the presence of subcube and link failures.
Each operator “0” works on pairs of a-tuples {0, 1, x}" or (0, !, q}". Each definition
begins with 2 wble describing the “0” operauon on each pair of corresponding elements
from the n-tuples, then uses this coordinatewise definition 10 define the o™ operation on a
pair of n-twples. In what follows, ¢, describes a working subcube, while f, represents a

(failed) subcube or link. Algorithm 1 uses the # and $ operators to produce a set of
maximal size subcubes contuned in ¢, and disjoint from f,. Algorithm 2 operates on
faults using the D-operator, and uses the p{ operator and equality checking 10 remove
redundant terms from the computation of the fault-free subcubes.

Definition [: # operator. Letcy =8,y ... 8; ..agand fy = b, | ... b; ... by, where
a; € (0,1.x} and b; € {0,1,x}, where the fault type is a subcube failure. Table 1 defines

the coordinate # operation.
The following cquation defines # operation between ¢, and f;.

Ch cifa #b, = yforanyi
R f, =40 vifa;#b, =zforalli
U 8n-1--.0;410;8;-1..-ag ; otherwisc, where
ieP P={iiag#b=a,=0o0rl}

)

r
If C = {cy.....c,) is a set of n-tuples, then let C #f, = Hl ch ¥ f,. Miller (7]

described the sharp (#) operator and its properties. The # operator is quite general and a
modification (o it finds use in PLA testing {10] and reliability computation of general
networks {13, 15]. Note that in the coordinale # operation, y denotes that the cubes are
disjoint and z indicates a possible overlap.

Definition 2: S operator. Letcy=a,q .. 8;...agandf; = b, ; ... b; ... by, where
a;€ {0,1,x} and b; € {0,1.q}, where the fault type is a link failure. Table 2 defines the
coordinate $ operalor.

Define the $ operator between ¢, and f; as follows. Letcy $fo=c¢c,, fq; S b=y
for any i; else, let ¢, S £, = X U Y U Z, where for some j, a; S bj=1 and

@ :ifa;Sb, = for some jand a;Sb; = ¢ foralli # j,
X=41J ap1.--0,0,8;1...ap : otherwise, where

P P={ila$h=0;=00r1},
Y =a,.y .- aj,,,l 0 aj_l ... ag, and Z =dp.q - a}-+l 1 d}'_l - 80- (2)

r

IfFC = (cq....c,) is a set of cubes, then let C S f = HI cy S f;. Note that in the
coordinate S operation, y indicates that the cube and link are disjoint, z indicates a
possible overlap, and t in dimension § indicates that the faulty link is in dimension j and
the subcube contains links in dimension j.




a; } 4
0 z y z 0 4 y y
1 y z z 1 ¥ z y
X 1 0 z X 1 0 t
Table 1. Coordinate # operation Table 2. Coordinate S operation

Example 1. Consider a faulty link 00q (= f;) in Q3. For ¢| = xxx, we obtain 11t by
the coordinate S operation. From Equation (2), the list of {ault-free subcubes is ¢ $ £ =
{1xx, x1x, xx1, xx0}. The first iwo values are all maximal subcubes in ¢y disjoint from
00x, the 1-subcube containing link 00q; the next two values correspond to ¢ split along
the direction of link 00q.

Definition 3. (a) Letfy= b, 1 .. b; ... by be the TV description of a subcube.

Then D(f;) = ‘.g, XX ... X Z‘ x...xx,where P = (ila;=00r1}.
(®) Letf;=b,.y ... b; ... by be the TV description of a link, where b; = q. Then

Dfy=XuYUl, whereX:H, XX ... X Z‘-x...xx,wheref’={ili:j}.)’:xx...

x0x ... xx,and Z=xx ... x1x ... xx, where the 0 and 1 are in posiuon j.
For example, D(101x) = {Oxxx, x1xx, xx0x} and D(10ql) = {Oxxx, x1xx, xxOx,
xx1x, xxx0;. Set D(f;) contains all maximal subcubes disjoint from f.

Definition 4. pl operation. Let ¢, and f; denote subcubes, where ¢y =a, y ... q; ...
agandf, = b, | .. b; .. by, where a; € {0,1x} and b; € {0,1x}. The coordinate pl

operation is defined in Table 3.
Define the pi operation between ¢, and f; as follows.
& ol foe %] iifa; plb;=yforanyi, 1Sisna
BTNy edidy sotherwise, where d; = a; pib;, for 1SiSa

Note that p{ returns the subcube common to ¢, and f;. If ¢, and £, are disjoint, the
coordinate o{ operation returns a y in the bit position for which ¢y hasa l and f, hasa 0

{or vice ve:3a), and the pl operaton returns the null set.

fs 0 1 x
<, l

0 0 y 0

1 y 1 1

x 0 1 X

Table 3. Coordinate p/ operation

Examtles 2a, 2b, and 2¢ given below, illustrate the pl operation and the use of it for
redundancy (duplication and absorption) checking. Assume the reference subcube as X.




Example (2a) Lxample (2b) Example(2¢)

X)) 1T1xx90 X) 11 xx20 X)) 1t1txx20
Y9 11 xx0 2 11x00 W) 1 xx10

pl:(A) 11 xx 90 pl:8) 11 x0090 oy 11 x10
Observe in Example 2a that cube A is equal 1o cube Y. Thus, cube Y is a subcube of
cube X and is redundant. Example 2b is similar. Example 2a is a case in which Y is
identical 10 X and Example 2b is a case in which Z is a proper subcube of X. Observe in
Exampie 2c that cube C is not equal to either cube W or cube X. Recall that pl produces
the subcube that is contained in both X and W. Thus, cube W is not a subcube of cube
X, and vice versa, so neither cube is redundant

4. Reconfiguration Algorithms
In this section, we prescnt two reconfiguration algorithms based on the operators
discussed in Section 3. Algorithm 2 idendfies and removes the redundant terms generated
in Algorithm 1. For both algorithms, C;, represents the set of fault-free subcubes after
the ith fault.
Algorithm |, (Idenufication of faul-free subcubes)
Input: List of subcube and/or link faults f1, f4. ... fn-
Cy={c;},wherecy=xxx..x /* Q, is inidally fault-free. */
fori=1wmdo
begin
if f; represcnts a subcube failure
then Ci+1 =C#f;
else Cip =C;SS; f* f; represents a link failure */
ifCiy = O, then returmn @

end
Retumn C”H'l .

Theorem 1: Given a list of faulty subcubes and links in an n-dimensional hypercube,
Algorithm | identifies all maximal dimension fault-free subcubes.

Proof: Let = be the fault-free portion of a fauity n-cube. Let C,, be the set of all
maximal fault-free subcubes in Z. Now consider a faulty subcube or link finZ. Let 2’
denote = with f removed. We establish that, given C,,, Algorithm 1 produces the set
Con+ Of all maximal fault-free subcubes in Z°. This will prove that Algorithra 1 applied
10 a succession of faults in an a-cube in tumn will produce the set of all maximal fault-free
subcubes of the n-cube, since Algorithm | begins with a fault-free ncube.

Consider a particular subcube ¢ =a,_ | ... ;... ag of Cp, where a; € {0,1.x}. We
will show that given a new fault f, Algorithm | retumns the set ¢’ of maximal fault-free
subcubes in ¢, that is, the set of all maximal subcubes in ¢ that do not contain f. We
describe the case in which f is a subcube; the case in which f is a link is handled
similarly.




Let f=b, .. b;.. bgbe a faulty subcube, where 5; € (0.1.x}. Algonthm 1
computes the set ¢’ = ¢ # f. Algonthm 1 compuies the coordinate # operauon between ¢
andf. Ifa; # b, =yforany i, then ¢ conwuns a 1 (0) and f contuns a 0 (1) 1n coordinate
posiuon ¢, so they are disjoint and ¢’ = {c). Ifa; # b; = z for all {, then either g; = b; or
b; = x for cach i. Conscquently, ¢ i1s conuined completely within f, so ¢’ = 0.

Otherwise, ¢ and f overlap, but ncither contains the other. In these cases, ¢’ = L‘J, an.|
1€

- Qi1 @;8;...00, where P = (ilg;#b;=0;=00r1}. Forfixedi, a; #b;=0 (1) if
a;=xand b;=1(0). Thecube ¢,/ = Gp| --- @iy @; Bj] - Gy =ap.y - Biyy D; G}
... dg is clearly disjoint with fand conuined in c¢. Cube ¢’ is one dimension smaller than
¢ and s0 i1s maximal. All other subcubes of ¢ either overlap with f or are contained within
an element of ¢’.

The argument above establishes that Algorithm 1 produces the set of all maximal
fault-free subcubes within each individual element of C,,. This set, over all elements of

Cpn, forms C,, 1. Itis clear that since = contains all maximal fault-free subcubes before
fault f, then no maximal fault-free subcubes in =7 are excluded from C,, ;. Therefore,
Algorithm 1 produces all maximal fault-free subcubes within a faulty ncube. §

Algorithm 1 may produce redundant terms. In what follows, we describe a general
approach to produce only nonredundant terms using the 7 and p! operators. Shier and
Whited [12] confronted a similar problem while generating cutsets from pathsets by a
process called inversion. We inroduce the following procedure that, givena set E = (E,
Ej...., Ep) of fault-free subcubes and the set e = (e, €2,..., ¢,] of all maximal subcubes
disjoint from a new fault, produces the new set of fault-free subcubes and eliminates
redundant terms in the resuit.

Procedure Find_Subcubes(E, )
begin
RLI =@;RL2=3
For each pair (Ej-. e;),where 1 <j<pand 1 <Sisr, do the following
Z=E;ple
if Z = @, then go o the next (i, /) pair.
if Z# @ then do
begin
Y" =1; Y] =1
ifZ=€", then Y"=0
ifZ:Ej, then Yj-=0
ifY;=0and ¥;=0
thene=e-e;E=E~E;
RL1=RL1  Z,and go to the next {i, f) pair.
elseif Yi(Y)=vand ¥;(¥) =0
thene=e~e;(E=E-E)
RLI=RL1w Z, and go to the next (i, j) pair.




elscifl ¥;20and ¥, =0
then RL2=RL2uUZ
end
For cach pair (a, B), such thata € RL1, B e RL2, do
begin
perform redundancy checking on (a, B); refer to Example 2
if B is redundant, then RL2=RL2 - B
erd
For each pair (o, B), such thata, B € RL2, do
begin
perform redundancy checking on (a, B); refer w Example 2
if & is redundant, then RL2=RL2 - q
if B is redundant, then RL2 = RL2 - §
erd
RLI=RL1URL2
Return RL1
end

Lemma I: Find_Subcubes(E, e) rewms a set of terms RL1 that contains exactly the
nonredundant sct of subcubes common o £ and e.

Proof skeich: 1l cubes E ] and ¢; are disjoint, then the coordinate pi operation between E i
and e; returns a y in at least one position, and Z = E; pl ¢; = @ and so makes no
contribution to the set of subcubes. Otherwise, the coordinate p/ operation returns the
term Z that describes the cube common to £; and e;.

The algorithm next tests whether Z=e¢,0or Z = Ej. If Z = e;, then this implies that
each x in ¢; maiches with an x in £}, but £; may have more x’s than ¢;. In this case, ¥;
=0 and ¢; is a subcube of £}, s0 ¢; is removed. Similarly, if Y; = 0, then £; is a subcube
of ¢; and is removed. Similar reasoning holds for other cases.

Lemma 2: Letty (13) be the size of RL1 (RL2). The redundancy checking in

!
Find_Subcubes requires up 10 lyt2 + (22) conuinment checks and leaves only

nonredundant residual terms in RL2.

h-n

A straightforward approach to redundancy checking requires as many as ( 2 )
containment checks.

As an example, let links fy = Oq and {2 = ql be faulty in Q;. Using TV notauon,
C, = (1x,x1, x0) and D(f2) = (1x, Ox, x0). Applying Fird_Subcubes(C,, D(f2)), we
getRL1 = {1Ix,x0), and RL2 = {01, 00} before redundancy checking. The redundancy
checking of the procedure removes term ‘00" from RL2. Finally, we obtain three non-
redundant terms { 1x, 01, x0).

The procedure below reduces the amount of computational efforts considerably over
Algorithm 1. Note, the order in which the £ vector is processed may appreciably affect




the towal amount of work done by the algorithm. In reliability literature (13},
prepracessing according to the increasing order of cardinality of terms is found 10 be
beneficial from the complexity viewpoint In this case, a ssimular sorting will help find a
maximum size d-subcube and also conwin the computauonal effort of the procedure.
Thus, we obtain the following algorithm.

Algorithm 2,
Input:  List of subcube and/or link faults f1, f3, ... fi.
CZ = D(fl)
fori=2tmdo
begin
e=D(f})
Civ1 = Find_Subcubes(C;, e)
Civt = Son(Cyyy)
end
Return C,p, 1.

Theorem 2: Given a list of faulty subcubes and links in an n-dimensional hypercube,
Algorithm 2 identifies all maximal dimension [ault-free subcubes.

Proof: D(f;) gencrates a covering for the minterms not contained in f;. Thus Cy = D(f})
has the effect of Cy = xx...x # f] or C7 = xx...x § f}, where f; is a subcube or link
failure, respecuively. By Lemma 1, Find_Subcubes(C;, D(f,)) computes a set of terms
corresponding to the maximal subcubes contained in both C; and D(f;) with the redundant
terms removed, which again has the same effect as C; #f; or C; S f;, where f; is a
subcube or link failure, respectively. Thus, Algorithm 2 computes the same result as
Algorithm 1. By Theorem 1, the thcorem is proved. 1

5. Complexity Analysis

We now analyze the time complexity of the algorithms. For a given list of m faults,
Algorithm 1 computes C; .y = C; # f; or C; S f;, depe~ Jing on whether f; is a subcube or
link fault, on each of m iterations. Assume that cor wuting ¢, # /. for one cube ¢, and for
one cube f; can be done in one time step for each resulting cube, so our object is o
bound the number of cubes in C;,;. We consider subcube faults only, assuming that
each fault is a O-subcube (that is, a node), as this will produce the worst case bounds.
Initally, C; = {xxx ... x}. By definition of the # operator, in the worst case, C; may
conwin n cubes: X X .. X 0, X X .. X @y X, ..., ®y.q X ... X, where a; € (0, 1}. In
the worst case, the set of cubes produced by ¢, # f; may coatain at most as many cubes as
there are x's in ¢,. and each of those cubes will contain one less x than ¢,. Hence, C;
may coniain at most a{r=1) - - - (n=i+1) = n!/(n-i)! cubes, where a is the dimension of
the hypercube Q, under consideration. Actually, with n symbol positions and 3 possible
symbols, { 1, x}, therc arc at most 3" possible cubes. Let v be the least value of i
such that n's(n—i)! 2 3. Note that a(n=1) - - - {n~i+1) < n’. So the Lime to compute m
iterations in the algorithm, for m < v, is




m

n! <
Z_‘! <2 on™.

1!1(’1*‘.) 1=zl

And the ume 10 compute m iterations in the aigonithm, for m > v, is

4 !

n! <« 11
2:(n-i)! ” Z? = 0(n") + O((m-v)3") < O(m3").

i=1 (Ve

In terms of N (= 1V1 = 2™), the size of the hypercube, the time complexity for number of

faults m S v is O(log™N) = o(N), and the time complexity for m > v is O(mNPy, where B
= logy3. This improves on the time complexity O(n(N-m)z) of Sridhar and
Raghavendra’s algonthm {14].

If we wish instead to compute a list of only the fault-free subcubes of dimension at
least n—, then we can obtain a better ime complexity. 1f m < &, then we again obtain a
time complexity of O(s™). Butif m > k, then we obtain the following time complexity.

k m t

n! n
Lot X Tmnn = 06 + 0m—bn®).

] G LRl
This time improves on Ogzgiiner and Aykanat’s algorithm {8} that requires

n
O[mk(k)j time to locate the available subcubes of dimension n— or greater.

Algorithm 2 has a greater worst case time complexity, but a beuer expected time
complexity. As noted in the discussion of Algorithm 2, the pl operator and equality tests
are used (o remove redundant terms from C;, 1. Thus, the namber of terms in each C; of
Algorithm 2 will be fewer than the number of terms in each C; of Algorithm 1. In the
worst case, Algorithm 2 ukes more timc because of the ume spent in redundancy
checking and sorting. In particular, the ith iteration takes O(nz‘) time as opposed 10
O(n') time for the other algorithms, leading w0 an overall time complexity of O(nz’") for
m S v as opposed 10 O(n™) and still O(m3") for m > v. The detection and removal of

redundant terms should, however, allow improved time complexity as it will reduce the
size of each C;.
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Improved Lower Bounds on the Rellability of Hypercube Architectures
Sie Teng Soh, Suresh Rai, and Jerry L. Trahan

Department of Eiecrical & Computer En
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Louisigna Siate University, Baton Rouge. i4 708

Summary & Conclusions - The hypercube topclogy, also known
as the Booiecan a-cube. has receatly been used for multiprocessing
systemns.  Several authors have analyzed the performance of
hypercube-based sysiems. As the size and complexity of a sysem
increases, however, the reliability aspects become egually important
and shouid be included in the performance parameter study of the
systemn. Thus paper describes algorithms for computing lower bounds
on two reliability memics, namely, terminal reliabdity {TR] and net-
work reliability {NR), measures often used for packet-swirching
applicagons The werminal (netwark) reliability is defined as the pro-
babiiity tat .lere exists a warking path connecnng two (all) nodes in
the stochastic graph model of the hyporcube. Note, there are oo
known polynomial ime algonthms for exsct computations of either
TR or NR for the hypercube, thus, lower bound computation is 2
beuer approach. The paper presents polynomial dme algonthms that
obuin improved lower bounds for both TR and NR than known
results. Some existng techmgues for TR and NR evaluaton are dis-
cussed, and lower bound results are compared with previous boands.
Niustradng examples are provided to describe the proposed tech-
niques. Our resuits show that for link reliability p = 0.95 o better,
which is the case for practcal hypercube-based sysieme, ooth relia-
bility pararceters are close 10 1. These results further verify the
robustmess of the hypercube architectures under Link failures.

Keywords. Combinatancs, Hypercube, Lower Bounds, Network Reli-
abisiry, Termunsl Reliabiliry.

1. Introduction

The hypercube topology, aiso known as the Boolean x-cube or
binary a-cube [a], has recentdy been used for mul-icomputer systems.
Each of the 2" nodes of an n-cube is & computer which is directly
connected 1 4 neighboring nodes. Refzrences (4.5] discuss iopologs-
cal properues of a hypercube graph. Performance analysis of
bypercube-based systems bas been addressed in [6.7). As the size
and complexity of a sysiem increases, reliability aspects become
increasingly important paramzters :» be included in the performance
analysis of the sysiem.

The reliability of hypercube-based multicomputer systems 15
generally evalusted using the following n- dels.

1) Terminal Reliability (TR; Model: The system works as iong as a
specified inpur (node) is connected to & specified output (node).

2) Network Reliability (NR) Mode! (8]: The sysem works as long
33 all nodes in the system are connected.

3) Task-based Reliability Model {1,2): The sysiem works a3 jong
as some gunimum number of connected nodes are svailable on
the system for sk execuuon.

4) Funcuonal Subcube Model {3): The systemn works as long as
some funcuonal minimum degrse subcube exius,

T?mwtu‘upmcdmmbychyFomOﬁczolScxmuﬁcRmmh
under gram  AFD.R.91.0028

The models may be evajuated by assuming that only the nodes
_can ful while the links asre reliable, or only ihe links can fai) while

the nodes are perfecy, or both nodes and links can fail In addinon,
each mode! assumes that node / link fadures are staristcally indepen.
dent. A convennonal reliabibry modeling approach usually considers
a stochastc graph model with failing links. In hypercube souctamres,
this approach is warranted w0 verify the sturdiness of the aetwork
mode! of the topology. Moreover, in a hypercube, the perwork relis-
bility is obvious with perfect links and failing nodes. The NR wich
node failures is just the probability that all nodes are operanonal,
which is the product of the node reliabilines.

In general networks -he problem of computing any of e fry
twree measures exactly is #P<ompiee [9] and so wall require an
unreasonable amount of compulation ume. It is ofien possible, how-
ever, 10 much more efficiently obtain upper and lower bounds on &
reliability measure. The lower bound is of greater interest a5 the fys-
tern will be at least this relinble.

in this paper, we investigate the TR and NR models, and con-
sider the link failures case. We propose new techniques © improve
Jower bounds for both the TR and NR. These techniques produce
bener results and are compunble in time polynomial in the order of
the dimension of the hyrercube.

The layout of the paper is as follows. Secton 2 presents the
background material which includes nomaoons, assumpooas, and dis-
cussion on carlicr work done on the topic. Secuon 3 proposes an
algorithm to obtain a tghter lower bound on TR, while Secton 4
develops an algorithm for an improved bound on NR. o Sectom 5,
we present the bounds computed for TR and NR using the new wech-
giques, and compare the results with those obmined by previous
methods.

2. Background
2.1 Notations and Assumptions

Notations
C, n-Cube of hypercube.
N L) number of ~des (links) in C,. N = 2%, L = 22"
» ) link reliabiliry (unreliability), pvg = 1.
ST(C,) number of minimal spanning tees in C,; ST(C,) =
L] ) H
“Tlen'.
1t
o, a function representing (1 - p*)
TR(C,.p) terminal reliability of C, with link reliabiliry p.
NR(C,.p) nerwork reliability of €, wath link relability p.
G, ith group of paths.
Py Jjth path of proup G,
RE,; reliability contibunon of P, .
R, reliabiirty contnbunon of G,
Assumtions

8) A iink 15 bidirec _onal.
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. axs ATE StAfIshicauy 0enacal and have e same provanility of
y eSS 2
x {alures are syaosu icaily independent. and nodes are perfec:.
3 . P"v‘ous Work
gt Termunal Reliability
Let 5. 1) De aparr of source and terrunal nodes in an a-Cude.
! W1l compuie a lower bound on TR using oniy shortest length
e Wwithoui 10ss of general:ty, consder the addresses for 5 and ¢
1 and 2"~1. respecuveiy. These nodes are at diameter distance.
,\e,,. e ! s, 1) munpaths m C, {4). The terrmunal reliability (TR)
o 7 <uDe 15 e prodapility that there 13 2 workung path from 5 10
seseiie ek fasjures. This prodability can be computed by first
. ,.,ﬂ;mg the a! source-termunal paths for the C,, and then using
| ° o sum of disjoint products (SDP} techmque {9) ©w gansform it o
~ w2i0g0us reliabdiry expression for the TR vaiue. The aumbers of
" s and paths for the cube grow exponentially with the number of
oces 10 Ca hence 1t s not efficient to compute TR for large C,
g e above method. Alternaovely, compuang a lower bound on
= offers the possibiity of oblaning an imporant insight 1w the
.pue of TR at 2 much better computaconal cost.

f Of the n' (s, 1) minpaths, a of these are disjoint. A lower
} +.nd on TR 1s computed by considenng only these a disjoint paths
¢ .png a method used to obtain the reliability of a senes-parallel
~eem (9] Let TR(C,. p) be the Jower bound on TR for a C, with

& reliability p by considenng only its a disjoint paths. Then,
TRC,.pY= 1~ (3 -p*). )

i ~¢ model 15 srighdorward. but rapidly deteriorates as a increases.
2 Secuon 3, we provide a aghter bound on terrunal reliability for an
<ube.
22 Network Reliability

The network reliability (NR) or all-terminal reliability of a C, is
2¢ probability that every node in the a-cube can communicate with
~ery other node despite link failures. One may compute the exact
wue for NR of a C, by first generating its minimal spanning trees,

2en in turn using these w obtin NR. An a-cube is a maroid [9), so
ZAREL {11} is able w compute NR from the set of minimnal span-
ag yees. which is of size ST(C,), in tme poiynomial in ST(C,).
.rforunately, ST7(C,) is exponential with respect o 4. Thus, this
zamque is not advisable for large €,. Furtheamewe, there is no
oown polynordal ame algorithm for the NR problem in €,. Obtain-
‘73 jower bound on NR 1s, obviously, a more practcal approach.
‘wg et al {177 ave a lower boond on NR by consmdering the
smoer of spanmng tees in C,. Then, they weighted each spanming
™ 5y conmdering its 2° -1 links ay operational and the rest of the
~x set as faled. Thewr bound is acceprable only for very small p
3% The reusbility polynomial concept (9] may aiso be used for NR.
‘s noted in [8], however, the resulamt lower bound on NR is not
‘. Furthermore, the method based on this concep! is polynomial
2 only 1n termms of the number of links, and so 18 exponendal in
‘t 2imension of the a-¢ube. Bulka and Dugan [8] got a lower bound
©:2¢ NR of an a<cube from a iower bound on the reliability of an
v <ube, which 1n rurm is obtained from one on an (a~2)-cube, and
420, ungl the cube 15 smail snough (base cude) that 1ts reliabiliry
4% ¢ evaluaiec exacty. Note, Buika and Dugan used a Cy as the

Iy

¢ g, for which the exact reliability is given as:
NR(C,. p) = dp (i-p pip®.

Butka and Dugan's algonthm (8] computes the lower bound on
R of 2 C, in three seps. In the following, all 2°~! links connecung
Ze-1's are wTmed as exierior links.
3 1. Both (a~])-cubes xre operating and { exierior links operate,
Tlg g2l

g4

raafe
TU=MR(Copp | |peT "

iwl Lt

Sie= 20 AT east one A~ -CuDE 1S Operaung, and ORE EXENOT Nk i3
‘ule

TI= 2 NRIC,.pni=q ™ 1= MRy 0% 07

Step 3. Al 27 extenor inks operaie.
TI=NR(C.i. pie2pq)p™”

The iower bound on network reliability of an a-cube 15 odwuned s
NRIC,.,pimT1+T2T3 2,

Corupurng T1 i Step 1 takes nme exponenual in the dimension
of the cube. and thus 1s useful only for dipensions & £ 9. For large
., reference (8] views an acube as a l-cube wath two (2°7
supernodes connected by one (2*7'»hine. Reference {8) next generui-
1zes the spproach by considenng the a-cube as a 2-cube whose four
sodes are cach (a-2)»cubes, or 3 Icube whose eight nodes are each
(n~3)<ubdes. and so on. In general, an m-cube can be viewed as an
(n~k)cube whose 2*™ nodes are each & cubes which are coanected
by 2*~* (2*)-links. Therefore, if the ongnal link relisbility s p. then
the new link reliability is 1<(1—p )7, which is the probability that at
least one of the 2* links is operadng. Using this approach, Bulka and
Dugan obtained another lower bound on nerwork reliadility of an a-
cube as

NR(C,.p) = NR(C,. pY" - NR(C,q. 119 Y. 3
Note, for large & and p (k 22 and p 2 09), the second wrm of the
nght hand side in Equation (3) is approximarely equal o 1. Thus, »
sumplified version of (3) is piven as:

NR(C,.p) = NR(C,. pY " @
Comparing Equation (3) or (4) with Equation (2), it is clesr that
Equanon (2) provides a tghter bound.

In whar follows, we suggest an anprovement on Equanon (2).
|
First, using the simple combinatorial idensry z[‘ },‘,’*“-x.
.l
we express 71 ax
TLaNR(Coy pP - (1™ ™ -1~ g ) 1))
Noce, Equacon (5) is pelynomdal in the dimension of the cube, and
bence, we need not ase an inferior lower bound obuined by Equaton
(3) or (4). Second, © improve reliability contibuton of the events o

Step 3, we ahematively consider the following mitnations:
Step 3o At leaxt one (a—1)cube operaes.

T3a @ [NR(Cpmy. pP4INR(C,ocy. pYI-NR(C, L pDI 2T

Step 3b. Both (s-1rcubes fail, but if we coousct each par of
congruent nodes reducing the a-cube mio an (n-1)-cube, the com-
bined Links form a connected (a~1)>cube. The probability is given as

T3 @ (2 (1 = NR(Couy. PP - NR{Co_y )7

However, even with the suggesied improvement, the resuitant lower
bound is still not aght for p < 0.9 and = > 10. In Secoon 4 we
present 2 bener lower bound on network reliabiiiry winch pves &
significant umprovernent over the results based on the discussed
method.

3. Terminal Reliability - An Improved Bound

To umprove the lower bound TR(C,, p). we congfider a(a-2)
minpaths, seiected and ordered using 8 routng method described
below, and then use s Boolean technique w compute the reliability
value. Noe, the selecied a(n~2) aunpaths include the » disjornt paths
used for generating TR ,(C, . p). 30 our iower bound is tighter. Furth-
ermore, the proposed method uses the minpaths o analytcally calcu-
lare the reliatility without esumeradng them. Let TR(C,. p) be the
terrmnal relisbility obtained from these a(a-2) paths. Conmder the
mnpaths t be n (a-2) groups, each of which conmsts of & paths
Fori=1,2, - ,a=2,andj =1 2 . a, let P, represent the
Jth path in a group of paths G,. In what follows we present the root-
ing algonthm that enumernies the n(a-2) mnpaths 10 C,.
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3.1 Routing Algorithm

Any munpath from source Aode 0 0 terqunal node 2°-1
gaverses A links in a different dimeasions. Numver the dimensions
by 0w a-t. Let P, be dod, - d..,. where (do 4, Ly}
= {0, 1, . #-1], denote the path from node 0 to node 2°-i
obtaned by first traversing a link 1n dimension d4 then taversing a
link tn dimension 4, . then maversing a link i dimension d4,.,.
Algorithm
i) P,y 201234 . (a=1)

for ;= 2 10 1 da begin

Path P,, is obuuned by waversing dimensions in the order
given by a left rotate by one of £, _;.

end;

2) for i = 2 10 n-2 do begin

for ; = 110 n do begin
P, has the same first traversed dimension as P .
The last (-1 taversed dimensions of P, arc the same as
those in P,_, . The remaning a~i dimensions (that is the
2nd 10 (n—+})ith dimensions mrversed) are given by a left
roate by onc of the dimensions in the same posidons in
Pt-l B

end; Y

end;

The algorithm generates n(n-2) paths with the following proper-
tes.

Property 1. Paths 7, ; and P, are link disjoint, for j w&.
Property 2. Paths 2, ; and P, have (i+1) common links, for [ < &.
Property 3. Paths P, , and P, are link disjoint, for j » /.

Observe that G, comprises the a disjoint paths considered for
TR(C,.»). The TRLC,,p) is computed analyncally by using the
concept of Boolean techniques [9.11].

Example §. To illusoare Propernes | through 3, consider s €, with
source and terminal nodes as 2 = 000000 and ¢ & 111111, regpec-
dvely. Using sbove algorithm, the various 6(6-2) minpaths grouped
and ordered are given as follows, where the path is listed to the left
of the arrow and the nodes visited (excluding the sowrce and termyinal
nodes ) are lisied w0 the right of the arrow.

Group G1:

P;:012345 -> 000001-000011-000111-001111-011111
P2:123450 -> 000010-000110-001110-011110-111110
P3:234501 -> 000100-001100-011100-111100-111101
P4:345012 -> 001000-011000-111000-111001-111011
P5:450123 -> 010000-110000-110001-§10011-11011}
Ps:501234 -> 100000-100001-100011-100111-101111
Group G2:

P, :023415 -> 000001-000101-001101-011101-011111
P,3:134520 > 000010-001010-011010-111010-111110
P5:245031 > 0001 00-010100-110100-110101-111101
P14:350142 > 001000-101000-1¢1001-101011-111011
Ps:401253 > 010000-010001-010011-0101 11110111
Pe:512304 > 100000-100010-100110-101110-101111
Group G3:

Py, :034215 -> D00001-001001-011001-011101-011111
Pyy:1453 20 -» 000010-017 ., i10010-111010-11111Q
Py3:25Q0431 -» 000100-100100-100101-110101-111101
Ps:301542 > 001000-001001-001011-101011-111011
Piy:412053 > 010000-010010-010110-010111-110111
Pys:523104 > 100000-100100-101100-101130-101 111
Group G4:

Pyy:043215 > 000001-010001-011001-011101 01111}
P;:154320 > 000010-100010-110010-111010-111110
Pyy:2085431 > 000100-000101-100101-110101-11110!
Pie 3103542 -> 001000-001010-001013-101011-111011
P,y:421053 -> 010000-010100-010110-010111-110111
P S5321 04 -> 100000-101000-101100-101110-101111

3.2 Boolean Techniques Concept

Booiean ecamques for renability evaluagon stan with 2 gum of
products expression for pathsels and convert i1 1nfo an equrvalent sum
of disjoint products (SDP) expression {11]. In the SDP form, an UP
or logical success (DOWN or fulure) siate of 2 Link x s replaced by
link rehiabifity p (unreliability q), and the Booiean sum (product) by
the antwmene sum (product). {n other words, the SDP expression 13
interpreted directly as an equivalent probability expression of termu-
nal reliability. U F, represents a path idennfier (an UP swate of 2 link
in 8 path P, has 1 in F,, winic & don't care 15 represented by 0), the
sum of products expression £ s piven by:

4
F= v, F, (6)
1)
where 1 denotes the number of minpaths berween (5. ¢) node par in
G(V.E). Equanon (§) 1s modified either canonically or conservanvely
1o generate the equivalent SDP expression, F(disjoint). The conserva-
dve modificanon 5 ysually preferred, unce u is more efficient com-
pared wath canonical modificason, where 2' events are requued
determine F(disjoint). ({ 1s the number of links in the nerwork) A
simpie way 0 generate murually disjoint events in Equanon (6) is as
follows:

FieFaFie FyFFie - «F - FL. )

where F denotes a8 DOWN event of path £, The probability of P
(operational) for an ith erm F, FU Fy - F[ can be evaluaxed
using conditonal probability and standard Boolean operanons as:
-l

PrF) PrF o - EL VR e R TT Pro(E).

Fadl

Here, E, represents a conditiona] cube {11} and defines conditions for
s path identfier £, DOWN given F, UP (operational). For the equal-
ity © hold good. £,’s must have non-redundant and muwally disjoint
terms. The probability of the first event Pr(F,) can be determined in
a strrighforward manner since failares are assumed to be satstcally
independent. The various wrms within £,°t will, in general nox be
disjoint {9.11]). This necessines making £,’s mutually disjoint before
we genersic the equivalent probability expreszion.
33 Improving Lower Bound oo Terminal Relisbility
(a) Boolean Approach

Let F;; be the path identificr for path P,,. The sum of products
expression F for the n(a-2) minpaths is given as:

F‘U’eJ;mlSiSu-—Z.ls/Sn. @

Using Equation (7). the SDP form for (8) is obtained as:

(Foyv B g Fiae o «F i g o Frggls - ®
“(Fpga Fia - Fia - FL50

Note, the ith « terms in Equaton (9) give the reliabilicy conmbunon
of the paths in G,. Let R, denote the reliability conmbunoen of G,.
The lower bound on reliability of the C,, TRYC,. p), 1$ given as

o2
TRAC,.p) = LR, (10)

=)
By Equation (1} and Property 1, Ry= 1 - (1 -p")*. For {22 and
15/ S n, the disjoint expression of a eerm £, ; F7; . Fo, . F s

evaluated vusing conditional probability, sandard Boolean operanon,
and Properuies | through 3 as:

Prif, ) (1

PrF, P, - Fij Ik (an
rj“r,’;‘ <o B - PRESFSY o Fpl ()
WL FS o Fw o ECTFL o Foaa

Equadon (11) is easily coawputed as Pr(F }=p*. Let 2, - P,
denote the poruon of P, remaiming afier any links 1p common with
P, are removed. Forany ki </ wnd bt = ! P, -P, and P -7 wr
link disjoint, so Equanor (12) s computed as:
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n-1)-¢ n-1l.cube
TR, (.. B) (n-1)-cube |
S, 1
P p
s, Yy
TA,(Cy.1. P)
Fgure 1. A 2-model of Figure 2. Two sactions of
a-cube for TR prodblem n-cube

Pr(F N F, ) - Pr(F 2y Fiyd e
By Property 2, the reliability contmibuton of (15) is given as:

Pe(FF ). (15)

]

i=1

[TC1=p*) (16}
rwl
Lulizing the propernes of the selected paths, each probability com-
ponent of (13) has equal value. Let MG, denote the probdability of
each of them, i.e.,

MG =Pr(F F 7 - - Fi) 1Skey

By Property 2, and recursively udlizing a Boolean identity
oA, - abB, w ab + abAy - B, we obain:
MG, °z*p’°.-z(4*p°.-;<

@ *PPuin @ 49010 -+ ). (D

Similarly, (14) is computed as MG,.,. Thus, the reliabilicy conaibu-
non of path 7., is given as:

1=
RP,, = p* TI(1 = p*"'™ ) MG, Y™} (MG~ 1. (1)

rw]

where MG, = ®, and MG, = &; + p*®2_,. Thus, the reliabitiry con-
mbution of G; is obtained as:

i=) L] . .

R, =p* TII (1=p*7" ) TUMGY™ (MG 1. (19

ra J=t
Example 2. Con?'det 2l Rym1=(1 -p‘)‘, MG, = @ =1 -p"
and MG, = (1 = p%) + p¥(1 - p*?. By Equation (17) we obmin: NG,
= BrepXp g 40 Pyl MGy = Bpip O (g +p D y(q4p D). Util-
izing Equanon (19), the r:linbility contributions R, 's are obuined as:

1

Ry=pfT1 (1 =p™'" ) TIMGY ™ MG* .

r-l /-l

Ryap [T (1 -p i~ ) T MGy MG .

v.l Jsl

[]
R,=pt n(x- ""')):(MGJ’" MGy* .

rel|

For 5 = 0.9, one gets MG| = 0.468559, MG, = 0285797, MGy =
0.236268, and MG, = 0.224167. We also obuin R, = 0.989418. R,
= 0010038, &, = 0.000371, and R, = 0.000037, and hence Equation
(i0) gives TR4(C,. 0.9) = 0.999863.

(b} A 2-cube Modei for TR

Consider the C, consmucted of two C,.,"s that are connected by
2""' links. We call these links as exwerior links, and the finks within
each C,_, as intenior links,
Theoremn 1. Given a bound on TR for C,_;, TR(Ca.p. p). & 2cube
based lower bound on TR is expressed as:

TRYC..p)=2p - TRAC, 1. §) = PTRKC,.1. pI.

Proof. The lower bound on TR of the C, is computed by including
only rwo cxtenor links, i.e.. & link that connects the nodes C of the
two (n-1)-cubes. and a link which connects the nodes 2*~'-1 in the
subcubes (see Figure 1). Note, the (s, ¢) for the » cube in the tigure
13 (1), r3), and the two extenor links considered are (s, £9), (1. 1
with link relhiability p. The probability of (s, ¢,) of (g4, {3} connec-
uvity is given as the lower bound on TR for C,.;. Thus, (s, t5) con-
necavity is given as the TR for a €, with link reliability for (5,. 1)),
(33,1 gven 13 TRYC,. . p) and the other two links have probabdility
of success p O

8
0 9 4

3 1149 (57
244 |8

Figure 3. A 3-cute C,

Theorem 2. The lower bound on terminal reliability for C,,
TR(C,. p). 15 compuied as

TR(C..p)=2p TR (Coct, p) = GTR (Cocr 2)P .

where TR (Co_. p) = max {TRKCymso P) TRUC 1. P}
Proof. Obvious. O

The equatons for lower bound on TR in Equaton (10),
Theorems | and 2 can each be computed in ume polynomual in the
dimension of the cube.

4. Improved Lower Bound on Network Reliability

Let us consider an n-cube C, as two (a~1)-cubes connected by
2*~! links. We evaluate the lower bound on reliability of a €, from
the known lower bound on reliability of a C,.;. The proposed algo-
rithm divides the problem into three mumnually disjoint cases. In addi-
ton, the events in each case are also mutually disjoint among them-
selves. Thus, the lower bound on reliabilicy can be calcuiated as the
sum of the lower bounds on reliability obined from the following
three cases.

CASE 1: Both (n-1)-cubes and only one exterior link operate.
The graph modei for Case 1 is shown in Figure 2. Since both €, '3
operite, only onc good exterior link is needed to make the two sub-
cubes combine into a connected C,. The disjoint expression. of Case
1 is given as:

NR(Cauis PP - 04pa+pg epg™s - - - 4pg™ Y. 20)

The events in Case 1 gre all munially disjoint since we consider the
operating exuwerior links one at a tme, ie., an exterior link operates
when the links previously considered good fail Since 05p.¢ S 1,
Equation (20) can be reduced w:

NR(Cot. PP (1 =47, @n

Note. Case | includes ST gi(C,) = 27 ST(C,.) - ST(Ceu)
minimum spanning trees.

CASE 2: All 2*~* exterior links operate.
In Case 2, a C, is connected if at least one C,_; operates. When all
exterior links are good, the congruent nodes 1n the two C,.;’s can be
combined to form an (s~1)-cube, C ., in which each pur of adja-
cent nodes is connected by double links. Consider the Cy shown wn
Figure 3. Figure da gives the graph representanon for Case 2. The
reliability of the Cuyis pven as the lower bound on rclubnhty of a
C..; with link reliability p? + 2p¢ (= 1 - ¢*). since the C._; is con-
necwd when it conuins at least one working spanning tee, which
may have links from either of both C,.,’s. Thus, for p' » 1-g% we
have the following expression.
PT - NR(C,or. p) = NR(Cooy PV @)

Events in Case 2 are mutually disjoint In addition, Case 2 is mutu-
ally disjcint from Case 1. The events considered in NR(C,...p"}
include the possibilities that both subcubes operate, 30 we submact
NRYC.-i. p) to make Case 2 disjoint from Case 1. The number of
gunitoum  spannming trees used in Case L STeqprC.).
ST(Cany) 2977710,
CASE 3: 25 52°°'~1 exterior links and onc (x~1)-cube operate

Case 3 is incacuble for large C,'s, 50 we compute & lower
bdound on reliability.
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{c} Case 3b,
(b} Case 3a distance !

(d) Case 3,
(a) Case 2 distance 2

CASE 3A fori m2*"'-]

Figure 4b depicts the graph representation of Case 3A fora Cy.
As an example, the figure shows an event in which links 8, 9, and 10
operate while link 1] fails. Let an isolaied node be defined as 2 node
in a disconnected subcube C,., which has a fxiled exterior link as
one of its links. The Cy is connected if one C; cube operates and the
isolated node is connected by at least one of its interior links (links 6
and 7). However, we also have included the case in which the two
{n-1)-cubes operate. To make this case disjoint with Case 1, we sub-
mact NR(C,.;. p)*. The reliability conmbuton for this case is given
as:

2. 24 .Pr“-l . Q'(NR(C._;.p) . (!_q--l) -NR(C.-,.F)Z). Q3

Case 3A considers $Tcurw (Ca) = ST(C..y) - (r=1)- 2" minimal
spanning sees.
CASE 3B for i = 2*~'-2

The two isolated nodes can be at a distance one or more. We
consider the reliabdility expression for this case in two groups.
The mwo nodes are at distance 1: Figwe 4¢ presents the graph model
of this case for C,. The figure shows the events when links § and 9
operate, while links 10 and 11 fail. The lower bound expression for
this case is:
2L - pT " g NR(Camrn ) - =g - p

w0 - (1=g") ~ NR(Corn p ). @)

where L' is the number of links in C,.;.

Since the two nodes are at dismance 1, there is 2 link connecting

thern First, consider the link operational. Thus, the rtwo nodes can be
merged into a node X. The C, is connected if node X is connected
by ar least one of its interior links. Second, we coasider the connect-
ing link as failed. In this case, each of the wo podes should indivi-
duajly be connected by at least one of its intemior links. However, we
have also considered the case in which both C,.;'s operate. Thus,
make this case dis 7int from Case 1, we subtract NR(C,.;. 2)%. This
case considers S7(C._,) (n*-3r%+25) 2*~' mimimal spanning wees.
The two nodes are of a distance of more than 1: Figure 44 presents
the graph model of this case for C,. The figure shows the events in
which links 8 and 10 operate. while links 9 and 11 fail The lower
bound expression for this case is:

- .

2. =) PR gt (NR(C,p)
)

(=" = NR{Culi p ). (vl)!
When the two isolated nodes are at distance of more than one from
each other, the a-cube is connected when each of thern is connected
by at least onc of its interior links. Again, we have considered the
case in which both (n-1)~cubes operate which accounts for the sub-
wacton. The number of minimal spanning trees considered in this
case is ST(Ca.y) (A=1) (2*~'~a) 27! and thas, overall, Case 3B uses
STeaszsa (Co) = ST(Co-p) 2'(2*~ (%20 +1)~a%+w) munimal spanning
trees.
CASE3C for2g: 52713

The problem of obtaining an exact expression for this case
becomes intactabie, especially for lerge ». However, onc can get #
lower bound on the reliability conmbution of this case by considenng

a lower bound on the mumcal spanming oees thar have not Been
included in the reliability evaluated 50 far, and ke a lower bound on
reliability for cach of them. re., muluply the number by p™~' g%,
where d=f, -N+). Thus. 2 lower bound on reliabiuty expression for
Case 3C s
(STAC, ST gz /lCo ST caser ¥C.)

“STeasera (Co STeasen (€. )) - ¥ g 26

Combining all cases,
NR(C,, p) 2 QI Q23)-24)+(2526). 27)

The equation for lower bound on ¥R in Equaton (27) can be com-
puted in time polynomal in the dimension of the cube

Table | shows the comparisons of the exact reliability of €y for
the cases described obwined by CAREL ({11}, and the lower bound
resuits produced by the proposed algonthm.

S. Results and Comparisons

Tables 2 to 5 show the bouads for TR, TR, TR, and the tght-
est lower bound 7R for various C,'s, a » 3, 4, ., 16 and vanous
values of p. For n = 3, we have exact reliability values. As expecied,
TR, is always tighter than TR, since the munpaths considered 1n TR,
are only a subset of the ones for TR, The lowe: bound chbuuned by
the 2-cube model, TR,, performs worse than TR, for p > 04. How-
ever, TRy is ughter than TR, for p = 0.6 as shown in Tabie 3. For
0.6 <p SO8, TR, is tighter than TR, for some C,'s As shown in
Tables 2 w §, TR (computed by Theorem 2) always provides the best
bounds for any values of p and a. As the results show, for 2 5 16
and p S 0.6, TRy is always as tight as TR, ang thus i1 s suggesied ©
use the 2-cube model for TR. On the contrary, for p > 0.4, TR, i3
equal 0 TR for a= 3, 4, _, 16, and hence, Equanion (10) is sufficient
10 obuin TR.

Table 6 presenrs the comparisons of the best known lower
bounds on NR obuined in (8] with the new lower bounds generaed
by our proposed technique for & « 3, 4, ... , 16. Nowe, we hsve used
the modified Bulka and Dugan aigonthm [B], ie, by replacing 71
with Equation {S). As shown in the mble, our lower bounds are
tghter than the Bulka and Dugan bounds, especially for & > 10 and
p <09.
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Incorporating Dependent and Multimode Failures into
Reliability Evaluation of Extra Stage Shuffle-
Exchange MINs

Jerry L. Trahan, Daniel X. Wang, and Suresh Rai
Departmeru of Electrical and Compuwier Engineering
Louisiana Stare University, Baton Rouge, LA 70803

Abstract

Mulrstage Interconnection Networks (MINs) provide a good communication medium
between muldple processors and memory modules. Previous reliability evaluaton effons for
MINs assumed that all failures are stanstically independent and that no degraded operational
modes exist, though these assumptions are inconsistent with realistic conditions. In this paper,
we relax both assumptions and provide efficient algorithms for terminal, broadcast, and K-
terminal reliability evaluaton in the Shuffle-Exchange Network with an exma stage (SENE), a
redundant path MIN. The shock model is used in a modified form to incorporate failure
depeadency and muldpie operadonal modes into the reliability evaluaton. For K-terminal
reliabiliry, let £ = |K]. For an NxN SENE, the algorithms run in time O(log N), O(log M), and
O(k log N), respecdvely.

1. Introduction

Parallel computers have developed very rapidly in response to the need for high speed
compudng in many applications. Several parailel computers, such as [BM's RP3 (Hsu er al.,
1987; Wang er al., 1989), the University of llinois’ Cedar (Konicek ez al., 1991), and Purdue
University's PASM (Schwederski er al., 1991), employ a multistage interconnection nerwork
(MIN) t0 provide a communication medium between processors and processors or shared
memory modules. A MIN consists of N inputs and N ourputs and (typically) n stages of
switching elements (SEs), where n = logaV. An SE is generally 2 2x2 crossbar network and
provides either a straight (T-mode) or cross (X-mode) connection. The SEs in one stage are
connected to the SEs in adjacent stages by links that are arranged in patterns. Based on these
patterns, various MINs are called as Omega, Flip, Indirect binary cube, Modified data
manipulator, baseline, and reverse baseline necworks. All these networks are topologicaily
equivalent (Bermond er al., 1989). To improve the fault tolerance of the Omega nerwork, an
exma stage may be added to provide a redundant path from each input w each output. Thus, if
one path fails due to faulty links and/or SEs, an input can sall reach an output through another
path. This type of Omega network is called the Shuffle Exchange Nerwork with an Exrra siage
(SENE).

This work was supported in pant by the Air Force Office of Scienufic Research under grant AFOSR-91-0025.
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K-terminal refiabiliry is defined as the probability thar a set of working paths 2x:sts
from one specified input to each of a specified set X of ourputs. For an N>x¥ MIN and K] = |
(N), it is also known as zerminal (broadcas:) reliabiliry.

Previous reliability evaluadon algorithms for MINs assumed 2-mode fault models
(working or failed) for each component and stanstcally independent failures (Botng e: al.,
1989; Varma and Raghavendra, 1989: Cheng and Ibe, 1992; Trahan and Rai, 1992). These
assumpudons are common in reliability evaluation, as the evaluation problems are inmactable for
general nerworks (Colbourn, 1987). These assumptons, however, fail to adequately modei
real-world situadons. For example, Davis er al. (1985) and Schwederski et al. (1991)
discussed instances of dependent failures, or fault side-effects, in the PASM. The 2-mode
model leads to an underesimate of the reliability because it does not allow a degraded
operational mode of SEs. The assumption of independent failures leads to an overesumate of
reliability. Recenty, some researchers have addressed the probiem of incorporaring dependent
failure into reliability computanons for general networks (Boyles and Samaniego, 1984; Lam
and Li, 1986; Le and Li, 1989).

In this paper, we present efficient algorithms for terminal, broadcast and K-terminal
reliability evaluadon of an SENE composed of identcal SEs, allowing multimode and
dependent failures. The algorithms assume a 4-mode model of an SE: a fully operanonal
mode, two degraded operadonal modes, namely stuck-at-T mode and the stuck-at-X mode, and
a completely failed mode. Moreover, we assume that links are reliable. We modify the shock
model of Boyles and Samaniego (1984) to incorporate dependent failures into the reliability
evaluation algorithms of Trahan and Rai (1992). For K-terminal reliability, let k£ = |K]. For an
NxN SENE, the algorithms run in dme O(log &), O(log V), and O(k log N), respecuvely.

The layout of the paper is as follows. Secdon 2 describes MIN basics. Secton 3
discusses the shock model and explains its applicadon to SENE reliability analysis. Sectuon 4
presents results of the algorithms for terminal, broadcast, and K-terminal reliability of SENE
and outines the techniques used to develop them. For brevity, we present the results only.
The denvadons and proofs are discussed in (Wang, 1992).

2. Background

The Shuffle-Exchange Network with an Extra stage (SENE) (see figure in Cheng and
Tbe (1992)) with N inputs and N outputs is defined to be a MIN with logaV+1 stages of 2x2
SEs. The ourputs of SEs in stage i connect 1o the inputs of SEs in stage i+1 by a shutfle
connecton. for i =0, 1, ..., n~-1. Let SE;; denote the jth SE in stage i, where0SiSnandQ
<SjSNR2-1. To help develop a fault model, we consider an SE to be composed of two input
conwollers (ICs), two output conmollers (OCs), and a cenrral controiles (CC). Figure |
illustrates the soucture of an SE. Paths through the nerwork are established by a path request
mechanism in which a CC decides whether the IC should gansfer the input to the OC in T- or




X- connecgon mode.

3. Shock Model and Dependency Analysis

To analyze SE failure dependency, we use a shock model (Boyles and Samaniego.
1984). The shock mode! and the event based reliabilitcy model (EBRM) proposed by Lam and
Li (1986) are idendcal. The shock mode! was defined for 2-mode components. We generalize
its applicadon to include muldmode SEs in our reliability analysis. An extension of the EBRM
to multimode components, the cause based mulumode model (CBMM), does exist (Le and Li,
1989). Qur model, however, is more simply defined as an extension of the shock model or
EBRM than as a restricted applicaton of the CBMM. Further, we can explain our generalized
model in terms of shocks to subcomponents of SEs. Secdon 3.1 explains the concepts of the
model while its applicaton to SENE analysis is described in Section 3.2.
3.1. SHOCK MODEL

The shock model assumes that stadstically independent shocks, which occur with
known probability, cause the failure of network components. When a shock occurs, it causes
the failure of a specific component or set of components. We say that the component or
components are affected by the shock. A shock affecting a single component is called an
individual shock (1S), while a shock affecung multiple components is called an external shock
(ES).

For a nerwork with n components, up to 2"~1 shocks may be defined theoredcally.
Most shocks, however, may never happen in the real world. Therefore, we need to consider
only those shocks whose occurrence is reasonable in the specified real world condigons.

3.2. SENE FAILURE ANALYSIS

To apply the shock mode! to a SENE in which SEs may operate in degraded modes, we
will expand the nodon of an IS, while leaving the notion of an ES unchanged. Instead of
associatng a single IS with a single component, we will associate one IS for each failed or
degraded working mode of a component. Technically, a CC having a stuck-at logic fault can
produce a degraded working mode for an SE. Class | shocks (defined below) model this
scenano.

For ESs. we resmict our analysis to two modes onlv, so the occurrence of an ES causes
all affected SEs to fail. SEs that are far apart are unlikely to be affected by a single ES. In
general, the classes of ESs that we define are modvated by the failure of one SE causing the
failure of other SEs due to the links connecting them. For shared-memory computers, ecach
processor reads from or writes to the shared-memory through the MINs and so communicauon
flows in both direcdons. When the forward (reverse) part of an SE is failed, this SE will send
garbage messages to either one or both of the SEs in the next (previous) stage hat are
connected to it and may cause one or both of them to fail. Hence, we assume that an external




shock causes a failure in adjacent SEs either in the forward direcuon (towards the network
ourputs) or in the backward directon (from fault 1o nerwork inputs). In a pracucal design, 2
failure of an output (input) congoller can create a forward (backward) external shock. Such
dependent failures have been noted in MINs by Davis er al. (1985) and Schwederski er al.
(1991). In the terminology of Schwederski er al., the shocks that we have descibed above
correspond to fault side-effects with forward reach of 1, backward reacn of 1, and span of 2.
Class 2, 3out, and 3in shocks (defined below) model this scenario.

To help compute the reliabilites, we consider the following classes of shocks. Each
class of shock will affect a certain structured set of SEs. For example, a Class 3out shock
(defined below) will affect an SE and the two SEs to which it is connected in the next stage.
We define such a shock for every SE. Because the souctures affected by the same class of
shocks are the same and all SEs are identical, the probabilities that the same class of shock
occur are identcal for all such shocks. The probability that each class of shock occurs may be
time dependent. The purpose of our work is to find out a reladonship between the probabiliges
of each class of shock and the reliability of the whole nerwork.

Class 1 shock. Exactly one SE is damaged or fails.

A Class 1 shock is an IS that affects only one SE. We modify the shock model as
described above to handle stuck-at-T and stuck-at-X modes of SEs. Let Z;;(1.f) denote the
shock that atfects SE;; to be completely failed, let Z;(1,t) denote the shock that affects SE;; 10
be stuck ar T mode, and let Z,(1,x) denote the shock that affects SE;; 10 be stuck at X mode.
The probabilities that the three Class 1 shocks occur are pr pr. and p;, respectively. Let p,,
denote the probability that the three Class 1 shocks affectng SE,)- do not occur, hence, p,, = |-
(Pf*P:‘*'Px)-

Class 2 shock. Exactly two SEs fail simuitaneously.

A Class 2 shock is an ES that affects two SEs connected by a link. Four Class 2
shocks affect each SE SE;;, if SE;; is not in the input or output stages. These four shocks will
be denoted as Z;(2.k), where k = 1, 2, 3, 4 (Figure 2(a)). If SE;; is in the input stage, then
only Z,/(2.3) and Z,(2,4) affect it. [f SE; is in rhe output stage, then only Z,;(2.1) and
Z,{2,2) affectit. Let the probability that a Class 2 shock occurs be p; and does not occur be g2
= 1-p2.

Class 3out shock and Class 3in shock. Exactly three SEs fail simultaneously.
Class 3out shock.

A Class 3out shock is an ES that affects an SE and the rwo SEs to which it is connected
by its output links. Each SE in a SENE is affected by three Class 3out shocks denoted as
Z,{3.k), where k = 1,2, 3, except for SEs in the input and output stages (Figure 2(b)). If SE,
is in the input stage, then only Z,(3.3) affects it. If SE;; is in the ourput stage. then only
Z,3.1) and Z,;(3.2) affect it. Let the probability that a Class Jout shock occurs be p3, and
does not occur be §3o= 1-p3,.




Class 3in shock.

A Class 3in shock is an ES that affects an SE and the two SEs to which it is connected
by its input links. There are obviously three Class 3in shocks affecung each SE, denoted as
Z,{(3.k), where k =4, 5, 6, except for SEs in the input and output stages (Figure 2(c)). S£;is
affected by only Z;(3.5) and Z;;(3,6) if it is in the input stage and is affected by only Z,(3.4) if
it is in the output stage. Let the probability thart a Class 3in shock is up be p3; and down be g3;
= 1-p3i.

4. Reliability Evaluation

We now present the results for terminal (TR), broadcast (BR), and K-terminal (KR)
reliabiliry measures. Trahan and Rai (1992) developed a smaightforward algorithm for TR and
recursive algonthms for BR and KR of a SENE under assumpdons of independent and 2-mode
SE failures. They noted that SENE paths form a simple series-parallel graph for TR and a pair
of intersecting binary trees for BR and KR. To incorporate dependent and multimode failures,
we follow their concept, but must include a careful and much more detailed accoundng of the
shocks that may affect the SEs on the paths. Note that a single ES may affect one, two, or
three SEs on the relevant paths.

To compute TR, note the following.
a. For a SENE, there exist two paths from each input to each output. The ‘o paths share
an SE in the input stage and an SE in the output stage, but are otherwise disjoint.
b. A routing tag can be used to set the connections in switches on a path from an input s to an
output d. If an input number is 5 = 5157 ... 5, and an output number is d =d,d; ... d,, where
$1+ 52, ..., 5, and dy, d3, ..., d, are the bits of the binary representation of 5 and d
respecdvely, then the roudng tag fromstodisr=ryry ... r,, Where ry, ry, ..., r, are given by
ri=s;@®d;,foreach 1 <isn.

Theorem 1. For an input s and an ourput d in an Nx/N SENE, the terminal reliability can be
computed using the equadon below in O(log V) time.
n+l- in 5

TRIN.s.d)=(p +0y) = (pr +pu )= 43" (@3043

a-1 n=-]
n=l+r- 30 2-ra+ 21

+(Py + Pw) =Py +Pw) = 3" (G2043
2

Ma

)2n

)Zn

=] n~]
a-l-¥r n

—p2 (P +py) L (pe o) | B8 g300n) Y

Based on the structure of the broadcast paths in the SENE (Figure 3), BR can be
computed by a recurrence algorithm. This algorithm is described by Theorem 2.




Theorem 2. For an input 5 in an AN SENE, the broadcast reliability can be evaluated using
the equagon below in O(log V) tame.
BR(N) = (0, + po)Pw™ ' = 2030030 a2 ' BV Basiaso ™' BRIV,
where & = pu(72)°(q3043)°, B = Pudz-¢30d3i and BRN can be computed by
BRAN) = g3, BRI + 2p, + pip.,~ aBV2BR(N12)
+ 20, 03[P o+ @ 'p = 1) + pp.a3,1BY.
The base case BR14) is defined as
BR@) = [(1=pp’ + 20,02 + P, + P2 ~ P, )(1-Pp)
20402930 W 202%030 331"
Defininion. For K-terminal reliability, we describe each SE on a path from a specified
input s to an output in X as marked.

Theorem 3. For an input s and a set K of outputs in an NxV SENE, where k = |K], the K-
terminal reliability can be computed by the equadon below in O(k log N) dme.
KR(K.N.$)=[(0, + P, = 20.Pu@5 )KR (KN ,5) + p_gss KR, (K, N.9))3 0,45

Values for KR (X,N,s) and KR,(K,N,5) can be computed by recurrence expressions
according to the different cases enumerated below. The base case for N=4 can be computed by
considering several different cases. For the sake of brevity, the results for the base case are not
enumerated.
Case I: Only one child of considered SEs is marked.
1. The T mode in these SEs allow working paths from input 5 0 the k ourputs, then

KR (K.N,s) and KRo(K.N.s) can be computed by

N
KR((K,N,s)=(p; + pw)q%(mqs,-)z KRl(K.—Z-.s)

N - N
KRy(K,N,5)= [(p, + pw)zKRz(K,?-v)*-Z(p, +PuXpr +pr+a Py - I)KRI(K »7--?)]

: q% (@3093)"-

2. The X mode in these SEs allow working paths from input s to the & outputs, then
KR |(K.N,s) and KR(K.V.5) can be computed by the equanons above, exchanging p,

and pr.
Case [I: Both children of considered SEs are marked. Let K; and K, be the subsets of X that
lie in the left and right subgraphs, respecuvely.

KR (K ,N,s5) can be computed by

N N
KR\(K.N,s5)= KR,(K,.-Z—.S)KR,(K,,—Z—J) 33003

KR,(K.N,5) can be computed by
1. If input s can access the right (left) subgraph if considered SEs are set in T (X) mode, then




KR"(K N, S)«-[pWQ30KR-&(K[.— 3 KRﬂ( ,'\i S)

-

2
N
-plPWQBoKRl(Kl ,S)KR’!LK —;.S}

N
-pxpwq3oKRw(K,,—- S)KR\(K -7—.5)

- - N N
+2(Pw(Pf +a’'p, - 1)033 + D1 Px )KRI(KI’T,"S)KRI(Kr»?-S)]

6 4 4
4293043

2. If input s can access the left (right) subgraph if considered SEs are set in T (X) mode, then
KRy can be computed by the equation above, exchanging p, and p,.
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1. Introduction

To achieve faster computing speeds imperatve for many computer applicadons, the use of
multiple processors operating in parallel is necessary. Consequently, the reliability of the network
interconnecting these processors is of notable importance, as is the ability to quickly evaluate whether
the network can implement a desired set of connections. The problem of exact reliability evaluation,
however, 1s computationally inxactable for most reliability measures in general networks. In
particular, the problems of terminal reliability, broadcast reliability, and K-terminal reliability
evaluation are #P-complete (Ball, 1986). K-terminal reliability is the probability that a path exists from
one specified node to each of a specified set K of nodes; broadcast (terminal) reliability is a special case
of K-terminal reliability in which K is the set of all (one) output nodes (node). For some restricted
cases, though, a network offers sufficient structure that the reliability may be efficiently evaluated
(Colbourn, 1987).

Multstage interconnection networks (MINs) are a widely studied means of interconnecting
Processors to memory Of Processors to processors by stages of switches. MINs are also increasingly
used in experimental systems. MINs are an integral part of the design of such large scale projects as
PUMPS, CEDAR, and PASM (Siegel, 1985). Therefore, the problem of reliability evaluation of
MINs is of interest. In this paper, we present simple and efficient algorithms for terminal, broadcast,
and K-terminal reliability evaluation of the shuffle-exchange network with an extra stage. For the
reliability problems, we utilize a stochastic model of the MIN in which SEs may fail with a known
probability and links are always working. The terminal and broadcast reliability evaluation algorithms
run within time O(loglog N) and O(log N) for a network of size N, respectvely. The K-terminal
reliability evaluation algorithm runs within ime O(N log N). Varma and Raghavendra (1989) obtained
similar efficient algorithms for terminal reliability and broadcast reliabiliry evaluation of the Generalized
INDRA network, Merged Delta network, and Augmented C-network.




A

The structure of the paper is as follows. In Section 2. we present definitions and describe
some background results used throughout the paper. Section 3 describes the reliability evaluadon

algorithms and analyses their complexity issues.

2. Definitions and Background

Muldstage interconnection networks essentially comprise switching elements (SEs) and links
between switching elements. MINs may contain many combinations of switch sizes (Feng, 1981).
For our discussion, we restrict ourselves to shuffle-exchange MINs built from 2-input, 2-output SEs.
Such a shuffle-exchange MIN has N = 2" inputs and outputs and n stages, with each stage comprising
N/2 switches. The stages are numbered from 1 to n. The outputs of SEs in stage i connect to the
inputs of stage i+1 by a shuffle connection, for 1 £ i< n. A SENE has n+1 stages, numbered 0 to n.
SEs at the input, stage 0, are labeled /o, I}, ..., Iyp.;. SEs at the output stage are labeled Og, Oy, ...,
Onp-1- SEs at stage i are labeled (i-1)N/2, (i-1)Nf2 + 1, ...,iNf2 - 1, for 1 i< n. For the sake of
discussion, assume that the MIN connects N input processors to N output processors.

For any pair of input and output processors, the SENE possesses exactly two paths from the
input to the output. These paths share an SE in the input stage and an SE in the output stage, but are
otherwise disjoint. We will designate the path through the smaller numbered SEs as the upper path
and the other as the lower path. For example, the upper path from input 0 to output 0 contains SEs /j,
0, 8, 16, and Op, while the lower path contains SEs /g, 1, 10, 20, and O (Figure 1).

In a SENE, each SE in stage 0, the input stage, is connected to a pair of SEs in stage 1. Each
of these SEs is the root of a complete binary tree of SEs of height n whose leaves are the SEs of stage
n, the output stage. The two trees are disjoint, except that the leaves of the trees are identcal. (See
Figure 1.) We call the tree (including the leaves) rooted at the smaller numbered switch as the upper
broadcast tree (BTyy) and the tree (including the leaves) rooted at the larger numbered switch as the
lower broadcast tree (BT ). Omitting the input stage SEs, the set of upper paths from any input

processor forms the upper broadcast tree, and the set of lower paths forms the lower broadcast tree.
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We define the upper nerwork as the set of upper paths from each input to each output, omitting
the input stage SEs, and we define the lower nerwork as the set of lower paths from each input 0 each
output, omitting the input stage SEs. Each input stage SE is connected to one SE in stage 1 of the
upper network and one SE in stage 1 of the lower network. Figure 1 depicts the upper and lower
nerworks of a 16x16 SENE, noting the connections of the input stage SEs and depicting the output
stage SEs in the center. These very regular paths from an input to the outputs offers us the structure
necessary to efficiently solve the reliability and decision problems.

Note from Figure 1 that the upper and lower networks are symmetrical. For a given SE g in
stage i of the upper network, there is an SE g “in the lower network in the corresponding position in
the same stage. Let L(g) denote this SE. For example, in a 16x16 SENE, L(0) = 1 and L(17) = 21.
For SE A in the lower network, let U(h) denote the SE in the corresponding position in the upper
network, so U(1) = 0 and U(21) = 17 in our example.

Because of the regular connection pattern between stages of SEs, it is straightforward to list the
SEs on a path from a specified input to a specified output or, to determine the SEs connected 0 a given
SE j. We refer to an SE £ in a stage preceding that of SE j such that a path exists in the fault-free
SENE from SE k to SE j as an ancestor of SE j. We refer to an SE k in a stage following that of SE
such that a path exists in the fault-free SENE from SE j to SE & as a descendant of SE j.

We assume that the processor running our algorithm is a Random Access Machine that can
compute addition, subtraction, multiplication, division, and bitwise Boolean operatic.:s in one unit of
tme (Trahan et al., 1991).

For an integer s, let #s denote its representation in binary.

Lemma 2.1. For any SE g in an NxNV SENE, the following can be computed in constant time, given
a table T that can be generated in O(log N) time:

(i) the stage i in which SE g is located,

(i) the pair of SEs in stage i+1 to which the outputs of SE g are connected,

(iii) the pair of SEs in stage i~1 connected to the inputs of SE g,




(W)

(iv) for an SE 4 in a stage preceding stage i, whether SE 4 is an ancestor of SEJ,

(v) foran SE hin a stage following stage i, whether SE 4 is a descendant of SE j,

(vi) whether SE g is in the upper or lower network, and

(vil) if SE g is in the upper (lower) network, the SE L(g) (U(g)) in the corresponding position in the

lower (upper) network.

Lemma 2.2. For any given input /; and output Oy in an NxN SENE, the upper and lower paths

from /; to Oy can be generated in O(log N) time.

Terminal reliability (TR) is the probability that at least one path exists from a given input
processor to a given output processor of the network. K-terminal reliability is the probability that at
least one set of paths exists from a given input processor to each processor in a set K of output
processors of the network. Broadcast reliability (BR) is the probability that at least one set of paths
ex’sts from a given input processor to each output processor of the network. BR is a special case of
K-terminal reliability. Nerwork reliability is the probability that at least one set of paths exists to
connect each input processor to each output processor.

In the SENE, each input processor is connected to the input of a single SE in the input stage,
and each output processor is connected to the output of a single SE in the output stage. In the
following, we describe our algorithms based on the input (output) stage SE to which an input (output)
processor is connected, rather than based on the input (output) processor itself.

We make the following assumptions for the reliability problems. Each SE in the input stage
and output stage is always working. Each SE in the other (intermediate) stages is working with
probability p and failed with probability ¢ = 1 - p. Individual SE failure probabilites are statistically
independent. Each link is always working.

We will later show how to relax the assumption that the failure probability of each SE is

identical.




3. Reliability Evaluation Algorithms

3.1. TERMINAL RELIABILITY

Given the structure of the SENE mentioned above, the TR problem is easily solved. Let/ | be
the specified input and Oy, be the specified output. An NxV SENE contains exactly two disjoint paths,
that is, the upper and lower paths, each of length n = log,¥, from I;10 Oy. (Note: All logarithms are
taken to base 2 in this paper.) The graph is simply series-parallel. Let TR(N) denote the terminal
reliability of an NxV SENE.

TRV =1-(1 _plog N—-l)z_

Theorem 3.1. The terminal reliability of an NxN SENE can be evaluated in O(loglog N) time.

3.2. BROADCAST RELIABILITY

The structure of the SENE allows us to use a recursive approach to evaluatng the broadcast
reliability of the SENE. For the BR problem, let /; be the specified input SE, let A be the root of BTy,
let C and E be the two SEs to which A is connected in stage 2, let B be the root of BTy, and let D and
F be the two SEs to which B is connected in stage 2, where the label of SE C is less than that of E and
the label of D is less than that of F. (See Figure 2.)

Input /; may reach all outpuis by paths through A only, through B only, or some outputs
through A and the rest through B. We handle each of these cases separately. Case 1 comprises
instances in which A is working and B is failed; Case 2 comprises instances in which A is failed and B
is working; and Case 3 comprises instances in which both A and B are working. Each case describes
a disjoint collection of instances, so the overall reliability will be the sum over the three cases of the
probability that a set of paths exists from /; to each output in each case.

Case 1. SE A is working and SE B is failed. No paths exist from /; to any inner node in BT,
so the graph of nodes reachable from J; comprises /;, an edge from /; to A, and a complete binary tree

of height n rooted at A. Exactly one path exists from /; 10 each output, so every node in the binary tree




must be working. This tree contains N/2 leaves and N/2 - 1 inner nodes. The reliability of this case is

as follows.

Case 2. SE A is failed and SE B is working. The analysis is analogous to that of Case 1.

- N2
R apM) =p 72 q.

Case 3. Both SE A and SE B are working. Working paths exist from /10 SEs C,D, E, and
F. Call the outputs Op through Opy4.1 the left half outputs, and call the outputs Oy through Onz .
the right half outputs. Input /; can reach the left half outputs through SEs C and D, and /; can reach the
right half outputs through SEs E and F. Observe that the probability P, that/ ; can reach all the left half
outputs is equal to the probability Pp that [; can reach all the right half outputs. The probability that /;
can reach all the outputs is equal to P  Pg = (PL)Z. Evaluating P; reduces to the same broadcast

reliability evaluation problem in a network with half the number of outputs.

Rap(™) = 2 (BR(V/2))?.
Putting the three cases together, we obtain the following recurrence for a SENE with N

outputs.

BR(V) = 25" " g + p2BR(V/2)).

The base case for the recurrence is BR(2) = 2pg + pz.
Theorem 3.2. The broadcast reliability of an Nx¥ SENE can be evaluated in O(log N) tme.

Proof. We precompute p"z"'1 fori=1,2, ..., log N in time O(log N). We then evaluate the
recurrence equation in a constant amount of time for each of log N levels of recursion and, so evaluate
the broadcast reliability of an Nx¥ SENE in time OClog N). I

Time O(log N) to evaluate BR is far better than the time complexity of previous algorithms

using the sum of disjoint products method and running in time exponential in N (Botting er al., 1989;




Rai and Trahan, 1989; Kulkarni and Trahan, 1991). Theorem 3.2 also establishes that the probiem of
evaluating the broadcast reliability for a SENE is not #P-complete, as is the case for a general network.

The recurrence obtained for BR evaluation is very similar to recurrences generated by Varma
and Raghavendra (1989) for BR evaluation of other MINs. Their redundancy graphs for the
Generalized Indra Network and Augmented C Network are very similar to the broadcast tree sructure
shown in Figure 2 for the SENE. Their recurrence for BR on the Augmented C Network is almost
identical to that for the SENE.

3.3. DIFFERENT SWITCH RELIABILITIES

We now extend the solution method to two related problems. The first is the BR problem for
the SENE if SEs are allowed different probabilides of working, and the second is the K-terminal
reliability problem. The K-terminal reliability evaluation algorithm will use the BR evaluaton
algorithm for different switch reliabilides as a building block.

Suppose that the reliabilities of individual SEs may differ. Let p; denote the probability the SE
i is working. We will follow the previous decomposition approach with the same cases resulting, but
will evaluate the contribution of each case o the total reliability differently. The reliability function BR’
now has two arguments, G, the graph and associated reliabilities, and N, the size of the SENE. Let
G; denote the decomposed graph containing the left half outputs and associated reliabilities, and let Gg
denote the decomposed graph containing the right half outputs and associated reliabilities.

The complete recurrence, hence recursive algorithm, for this situation is as follows.

BR'(G,N) =98 [1ps +aa 10, +papg BR(G[, N12) BR'(Gg, N/2).
seB8Ty seBT,

The base case for the recurrence is BR'(G, 2) = paqp + qapg + PaPs-

Theorem 3.3. The broadcast reliability of an NxN SENE in which each switch may have a different
reliability can be evaluated in O(N log N) time.




3.4. K-TERMINAL RELIABILITY EVALUATION
K-terminal reliability is the probability that at least one set of paths exists from a given input
processor to each output processor in a set K of size . BR is a special case of K-terminal reliability in

which set K comprises the set of all output processors; TR is a special case of K-terminal reliability in

which set X comprises a single element. Given an NxN SENE, a specified input / j»and aset K =
{04, Op, ..., O}, where 1K1 = k, we wish to evaluate the probability that /; can reach each output O,
e K. We present two algorithms for computing K-terminal reliability, the first for instances in which
k > log N, and the second for instances in which k < log N. For these algorithms, the K-terminal
reliability is computed the same way whether switch reliabilities are the same or different, so for clarity
and generality, we describe the situation in which these reliabilities are different.

Both algorithms start with the same initalization procedure as follows. Set up an initally
empty array B, where element B(g) corresponds to SE g. Array B contains O(N log N) elements. For
each O,, € K and each SE g in the upper path or in the lower path from /; to O,,, mark element B(g).
Each path can be computed in O(log N) time by Lemma 2.2, and there are 2k paths to trace, so this
initializaton takes O(k log N) time.

Algorithm K1: k> logN.

To evaluate the K-terminal reliability, execute the algorithm above for the BR problem with
different switch reliabilities, making the following modification. If SE s is marked, then leave its
reliability as pg; if SE s is not marked, then treat its reliability as 1. This modification treats the parts of
the broadcast rees from input /; that reach only outputs not in X as being completely reliable, so the
result returned by this algorithm is exactly the K-terminal reliability. The time complexity of this
algorithm is O(N log N), as for the different switch reliabilites problem.

Algorithm K2: k <logN.

If an SE g is not marked, then no path from /; to any output in the set K contains SE g. Note
further that no path from /; to any output in the set K contains any descendant of SE g because of the
tree structure of the broadcast paths. Therefore, unmarked SEs and their successors will be handled as

whole subtrees without further recursion.
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The same decomposition approach will again be followed, but the contribution of each case
the total reliability will be evaluated differently depending on whether an SE is marked or not. The
reliability functon KR has two arguments, G, the graph and associated reliabilites, and N, the size of
the SENE. For the specified switches SE A and SE B, either both are marked or both are unmarked
because they share the same set of outputs that are descendants in stage n. Let BTy, (BT ;) denote
the set of marked SEs in BTy (BTL).

The recurrence, and hence recursive Algorithm K2, is specified below.

KR(G,N) =198 [17: ,ax I1n +papg KR(Gy, NI2) KR(Gg, N/2), if both A and
s€BTy seBT; o

B are marked;

KR(G, N) =0, if both A and B are unmarked.
The base cases for the recurrence is KR(G, 2) =psqg + g4Pp + P4pp, if both A and B are
marked; KR(G, 2) =0, if both A and B are unmarked.
The time to evaluate KR(G, N) is the sum of the time to evaluate each of the three terms. The
first two terms may be evaluated in O(k log N) time. The time to evaluate the third term is the sum of
the tmes to evaluate two KR functions for graphs with N/2 outputs. Thus, the overall time to evaluate

KR(G, N) is as follows.

Tkr(V) = 2ck log N + 2Txgr(N/2), where ¢ is a constant

gV
=ck Y 2'(logN -(i-1))

i=1
= O(kN).
This time measure is an overestimate, as it does not account for the fact that the size k of the set of
outputs of interest decreases at lower levels of recursion. (The amount of decrease at each level of
recursion depends on the exact set of elements in K.) Since the initialization time is O(k log ), the

overall time to execute Algorithm K2 to compute K-terminal reliability for a SENE of size N is O('N).




Theorem 3.4. The K-terminal reliability for a SENE can be computed in O(N - min{k, log N})

time.
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Figure 2. Upper and lower networks for a 16 x 16 SENE
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